浇 水问题
问题描述
瓜农王大爷去年种西瓜赚了不少钱。看到收入不错,今年他又重新开辟了n个西瓜地。
为了能给他的n个西瓜地顺利的浇上水,对于每个西瓜地他可以选择在本地打井,也可以修管道从另一个瓜地(这个瓜地可能打了井;也可能没打井,他的水也是从其他瓜地引来的)将水引过来。
当然打井和修管道的费用有差别。已知在第i个西瓜地打井需要耗费wi元,在第i、j个西瓜地之间修管道需要耗费pi,j元。
现在的问题是:王大爷要想使所有瓜地都被浇上水,至少需要花费多少钱(打井与修管道的费用和)?
由于瓜地较多,王大爷无法选择在哪些(个)瓜地打井,哪些西瓜地之间修管道。
请你编程帮王大爷做出决策,求出最小费用。
输入格式
第1行,一个正整数n,代表西瓜地的数量。
以下n行,依次给出整数w1..wn(每块西瓜地的打井费用)。
紧接着是一个n*n的整数矩阵,矩阵的第i行第j列的数代表pi,j(两块西瓜地之间建立管道的费用)。每行的两个数之间有一个空格隔开。
6
5
4
4
3
1
20
0 2 2 2 9 9
2 0 3 3 9 9
2 3 0 4 9 9
2 3 4 0 9 9
9 9 9 9 0 9
9 9 9 9 9 0
样例说明
在第4个瓜地打井(费用为3),然后将第2,3,4个瓜地与第1个瓜地间修管道(费用分别是2,2,2),这样水可以经过管道从4流向1,然后经1再流向2和3;
在第5个瓜地打井(费用为1),5和6之间修管道(费用为9)。
这样一共打了2口井,修了4条管道,能给所有的6个瓜地浇水,费用是:3+2+2+2+1+9=19。
数据规模和约定
对于所有数据,1<=N<=300,1<=wi<=100000;pi,i=0,1<=pi,j=pj,i<=100000。
算法思路
应用贪婪算法,先在打井费用最便宜的地打井,用已有水源的地更新没有水源的地(判断两者之间是否适合挖管道),若所有地都有水源,算法结束,否则,打下一口井
源程序
#include <stdio.h>
int flg[1000]; /*保存打井或者挖管道信息,0挖管道,1打井 */
int barr[1000][1000];
int arr[1000];
void update(int *st, int n);
int
find(int *arr, int n, int last)/*找出打井费用最低的地*/
{
int i;
int min = arr[1];
int rt = 1;
for (i = 2; i < n + 1; i++)
if (arr[i] < min && arr[i] > last) {
min = arr[i];
rt = i;
}
return rt;
}
int
check(int *a, int n)/*检查当前所有土地是否都有水源*/
{
int i;
for (i = 1; i < n + 1; i++) {
if (a[i] > 0) ;
else
break;
}
if (i == n + 1)
return 0;
else
return 1;
}
int
main(void)
{
int i, j, k;
int n;
if (freopen("water.in", "r", stdin) == NULL)
return -1;
scanf("%d", &n);
int st[n + 1]; /*保存有水源的地打井或者挖管道的费用 */
for (i = 1; i < n + 1; i++)
scanf("%d", &arr[i]);
for (i = 1; i < n + 1; i++)
for (j = 1; j < n + 1; j++)
scanf("%d", &barr[i][j]);
for (i = 0; i < n + 1; i++) {
st[i] = 0;
flg[i] = 0;
}
k = find(arr, n, 0);
while (check(st, n) != 0) {
if (st[k] == 0) {
st[k] = arr[k];
flg[k] = 1;
printf("第%d块地打井 \n", k);
}
for (i = 1; i < n + 1; i++) {
if (st[i] > 0)
continue;
int flag = 1;
if (i == k || barr[i][k] > arr[i])
continue;
else {
for (j = 1; j < n + 1; j++) {
if (i != j && barr[i][j] < barr[i][k]
&& j != k) {
flag = 0;
break;
}
}
if (flag == 1 && st[i] == 0) {
st[i] = barr[i][k];
printf
("第%d块地与第%d块地挖管道\n",
i, k);
}
}
}
update(st, n);
k = find(arr, n, st[k]);
}
for (i = 1; i < n + 1; i++)
printf("%d ", st[i]);
printf("\n");
return 0;
}
/*当i块地接通水源以后别的地可以通过与挖它管道接通水源
* 本函数作用是确定没有水源的地与i块地之间的管道*/
void
update(int *st, int n)
{
int i, j, k, l;
for (l = 1; l < n + 1; l++) {
if (st[l] > 0 && flg[l] == 0)
k = l;
else
continue;
for (i = 1; i < n + 1; i++) {
if (st[i] > 0 && flg[i] == 1)
/*flg[i]=1,打井的地,费用信息不能更新 */
continue;
int flag = 1;
/*跳过与第i块间管道费用比打井贵的地 */
if (i == k || barr[i][k] > arr[i])
continue;
else {
/**/ for (j = 1; j < n + 1; j++) {
if (i != j && barr[i][j] < barr[i][k]
&& j != k) {
flag = 0;
break;
}
}
if (flag == 1 && st[i] == 0 && flg[i] == 0) {
st[i] = barr[i][k];
printf
("第%d块地与第%d块地挖管道\n",
i, k);
}
}
}
}
}