HDU 5677 ztr loves substring (dp)



Problem Description
ztr love reserach substring.Today ,he has n string.Now ztr want to konw,can he take out exactly k palindrome from all substring of these n string,and thrn sum of length of these k substring is L.

for example string "yjqqaq"
this string contains plalindromes:"y","j","q","a","q","qq","qaq".
so we can choose "qq" and "qaq".
 

Input
The first line of input contains an positive integer  T(T<=10)  indicating the number of test cases.

For each test case:

First line contains these positive integer  N(1<=N<=100),K(1<=K<=100),L(L<=100) .
The next N line,each line contains a string only contains lowercase.Guarantee even length of string won't more than L.
 

Output
For each test,Output a line.If can output "True",else output "False".
 

Sample Input
  
  
3 2 3 7 yjqqaq claris 2 2 7 popoqqq fwwf 1 3 3 aaa
 

Sample Output
  
  
False True True
题意:给你n个字符串,然后你可以选k个这n个字符的回文子串,问这k个子串的长度加起来是否可以为l。
思路:我们可以事先用manachar求出所以回文子串的长度,然后我们记录长度为i的回文子串的个数,然后我们可以利用背包来判断取k个长度是否可以为l,因为这个是多重背包,我们可以用拆分背包来优化时间。dp[i][j]表示取了i个长度为j可以达到否。不过貌似暴力判断回文和直接多重背包都不会超时。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<map>
#include<vector>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int inf =0x3f3f3f3f;
const double  pi = acos(-1.0);
const int N = 1e2 + 10;
char str[N][N][N];
int dp[N][N], bag[N*N*N], yes[N][N], cnt[N], cnt1[N*N*N];
void manachar(char *ss)
{
    int l = strlen(ss);
    int len[N*2];
    memset(len, 0, sizeof(len));
    for(int i = l; i>=0; i--)
    {
        ss[i*2+2] = ss[i];
        ss[i*2+1] = '#';
    }
    ss[0] = '*';
    int id = 0;
    for(int i = 1; i<l*2+2; i++)
    {
        if(len[id] + id > i)
            len[i] = min(len[id*2 - i], len[id] + id - i);
        else len[i] = 1;
        while(ss[i + len[i]] == ss[i - len[i]]) len[i]++;
        if(id + len[id] < i + len[i]) id = i;
        if(ss[i] == '#' && len[i] == 1)continue;
        cnt[len[i]-1]++;
    }
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n, k, l;
        char s[2*N];
        scanf("%d%d%d", &n, &k, &l);
        memset(cnt, 0, sizeof(cnt));
        memset(dp, 0, sizeof(dp));
        for(int i = 0; i<n; i++)
        {
            scanf("%s", s);
            manachar(s);
        }
        int kk = 0;
        for(int i = 1; i<=100; i++)
        {
            int tmp = 1;
            while(cnt[i]>=tmp)
            {
                bag[kk] = tmp*i, cnt1[kk++] = tmp;
                cnt[i] -= tmp;
                tmp*=2;
            }
            if(cnt[i])
                bag[kk] = tmp*i, cnt1[kk++] = tmp;
        }
        dp[0][0] = 1;
        for(int i = 0; i<kk; i++)
        {
            for(int j = l; j>=bag[i]; j--)
            {
                for(int r = cnt1[i]; r<=k; r++)
                {
                    dp[r][j] |= dp[r-cnt1[i]][j - bag[i]];
                }
            }
        }
        if(dp[k][l])
            printf("True\n");
        else printf("False\n");
    }
    return 0;
}


Problem Description
ztr love reserach substring.Today ,he has n string.Now ztr want to konw,can he take out exactly k palindrome from all substring of these n string,and thrn sum of length of these k substring is L.

for example string "yjqqaq"
this string contains plalindromes:"y","j","q","a","q","qq","qaq".
so we can choose "qq" and "qaq".
 

Input
The first line of input contains an positive integer  T(T<=10)  indicating the number of test cases.

For each test case:

First line contains these positive integer  N(1<=N<=100),K(1<=K<=100),L(L<=100) .
The next N line,each line contains a string only contains lowercase.Guarantee even length of string won't more than L.
 

Output
For each test,Output a line.If can output "True",else output "False".
 

Sample Input
   
   
3 2 3 7 yjqqaq claris 2 2 7 popoqqq fwwf 1 3 3 aaa
 

Sample Output
   
   
False True True
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值