Java util之常用数据类型特性盘点 (HasMap深度分析)

出处:http://www.iteye.com/topic/754887

 

 

  1. HashMap的数据结构

    HashMap主要是用数组来存储数据的,我们都知道它会对key进行哈希运算,哈系运算会有重复的哈希值,对于哈希值的冲突,HashMap采用链表来解决的。在HashMap里有这样的一句属性声明:

    transient Entry[] table;

     

    Entry就是HashMap存储数据所用的类,它拥有的属性如下

    final K key;
    V value;
    final int hash;
    Entry<K,V> next;

     

    看到next了吗?next就是为了哈希冲突而存在的。比如通过哈希运算,一个新元素应该在数组的第10个位置,但是第10个位置已经有Entry,那么好吧,将新加的元素也放到第10个位置,将第10个位置的原有Entry赋值给当前新加的 Entry的next属性。数组存储的是链表,链表是为了解决哈希冲突的,这一点要注意。

  2. 几个关键的属性

     这个上面已经讲到了

    //默认容量
    static final int DEFAULT_INITIAL_CAPACITY = 16;
    //最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认加载因子,加载因子是一个比例,当HashMap的数据大小>=容量*加载因子时,HashMap会将容量扩容
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //当实际数据大小超过threshold时,HashMap会将容量扩容,threshold=容量*加载因子
    int threshold;
    //加载因子
    final float loadFactor;

     

  3. HashMap的初始过程

    构造函数1

     

        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
    
            // Find a power of 2 >= initialCapacity
            int capacity = 1;
            while (capacity < initialCapacity)
                capacity <<= 1;
      
            this.loadFactor = loadFactor;
            threshold = (int)(capacity * loadFactor);
            table = new Entry[capacity];
            init();
        }
     重点注意这里 

     

     

    while (capacity < initialCapacity)
                capacity <<= 1;
     capacity才是初始容量,而不是initialCapacity,这个要特别注意,如果执行new HashMap(9,0.75);那么HashMap的初始容量是16,而不是9,想想为什么吧。

     


    构造函数2

     

    public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
     构造函数3,全部都是默认值

     

     

       public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
            table = new Entry[DEFAULT_INITIAL_CAPACITY];
            init();
        }
     构造函数4

     

     

      public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            putAllForCreate(m);
        }
  4. 如何哈希

    HashMap并不是直接将对象的hashcode作为哈希值的,而是要把key的hashcode作一些运算以得到最终的哈希值,并且得到的哈希值也不是在数组中的位置哦,无论是get还是put还是别的方法,计算哈希值都是这一句:
    int hash = hash(key.hashCode());
    hash函数如下:

     

      static int hash(int h) {
        return useNewHash ? newHash(h) : oldHash(h);
        }
     useNewHash声明如下:

     

     

     private static final boolean useNewHash;
        static { useNewHash = false; }
     这说明useNewHash其实一直为false且不可改变的,hash函数里对 useNewHash的判断真是多余的。

     

     

        private static int oldHash(int h) {
            h += ~(h << 9);
            h ^=  (h >>> 14);
            h +=  (h << 4);
            h ^=  (h >>> 10);
            return h;
        }
    
        private static int newHash(int h) {
            // This function ensures that hashCodes that differ only by
            // constant multiples at each bit position have a bounded
            // number of collisions (approximately 8 at default load factor).
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
        }
     其实HashMap的哈希函数会一直都是oldHash。

     

  5. 如果确定数据的位置

    看下面两行

     

        int hash = hash(k.hashCode());
          int i = indexFor(hash, table.length);
    第一行,上面讲过了,是得到哈希值,第二行,则是根据哈希指计算元素在数组中的位置了,位置的计算是将哈希值和数组长度按位与运算。 

     

     

       static int indexFor(int h, int length) {
            return h & (length-1);
        }
     “h & (length-1)”其实这里是很有讲究的,为什么是和(length-1)进行按位与运算呢?这样做是为了提高HashMap的效率。什么?这样能提高效率?且听我细细道来。

     

    首先我们要确定一下,HashMap的数组长度永远都是偶数,即使你在初始化的时候是这样的new HashMap(15,0.75);因为在构造函数内部,上面也讲过,有这样的一段代码:

     

    while (capacity < initialCapacity)
                capacity <<= 1;
     所以length-1一定是个奇数,假设现在长度为16,减去1后就是15,对应的二进制是:1111。

     

    假设有两个元素,一个哈希值是8,二进制是1000,一个哈希值是9,二进制是1001。和1111与运算后,分别还是1000和1001,它们被分配在了数组的不同位置,这样,哈希的分布非常均匀。

    那么,如果数组长度是奇数,减去1后就是偶数了,偶数对应的二进制最低位一定是0了,例如14二进制1110。对上面两个数子分别与运算,得到1000和1000。看到了吗?都是一样的值,哈希值8和9的元素多被存储在数组同一个位置的链表中。在操作的时候,链表中的元素越多,效率越低,因为要不停的对链表循环比较。所以,一定要哈希均匀分布,尽量减少哈希冲突,减少了哈希冲突,就减少了链表循环,就提高了效率。

     

     

  6. put方法到底作了什么?

     

       public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
            int hash = hash(key.hashCode());
            int i = indexFor(hash, table.length);
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
    
            modCount++;
            addEntry(hash, key, value, i);
            return null;
        }
     如果key为NULL,则是单独处理的,看看putForNullKey方法:

     

     

      private V putForNullKey(V value) {
            int hash = hash(NULL_KEY.hashCode());
            int i = indexFor(hash, table.length);
    
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                if (e.key == NULL_KEY) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
    
            modCount++;
            addEntry(hash, (K) NULL_KEY, value, i);
            return null;
        }
     NULL_KEY的声明:static final Object NULL_KEY = new Object();

     

    这一段代码是处理哈希冲突的,就是说,在数组某个位置的对象可能并不是唯一的,它是一个链表结构,根据哈希值找到链表后,还要对链表遍历,找出key相等的对象,替换它,并且返回旧的值。

     

       for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                if (e.key == NULL_KEY) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
     如果遍历完了该位置的链表都没有找到有key相等的,那么将当前对象增加到链表里面去

     

     

      modCount++;
      addEntry(hash, (K) NULL_KEY, value, i);
      return null;
     且看看addEntry方法

     

     

        void addEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
            table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
            if (size++ >= threshold)
                resize(2 * table.length);
        }
     table[bucketIndex] = new Entry<K,V>(hash, key, value, e);新建一个Entry对象,并放在当前位置的Entry链表的头部,看看下面的 Entry构造函数就知道了,注意红色部分。

     

     

         Entry(int h, K k, V v, Entry<K,V> n) {
                value = v;
                next = n;
                key = k;
                hash = h;
            }
  7. 如何扩容?

     当put一个元素时,如果达到了容量限制,HashMap就会扩容,新的容量永远是原来的2倍。
    上面的put方法里有这样的一段:

     

    if (size++ >= threshold)
                resize(2 * table.length);
     这是扩容判断,要注意,并不是数据尺寸达到HashMap的最大容量时才扩容,而是达到 threshold指定的值时就开始扩容, threshold=最大容量*加载因子。 看看resize方法

     

     

      void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
    
            Entry[] newTable = new Entry[newCapacity];
            transfer(newTable);
            table = newTable;
            threshold = (int)(newCapacity * loadFactor);
        }
     重点看看红色部分的 transfer方法

     

     

      void transfer(Entry[] newTable) {
            Entry[] src = table;
            int newCapacity = newTable.length;
            for (int j = 0; j < src.length; j++) {
                Entry<K,V> e = src[j];
                if (e != null) {
                    src[j] = null;
                    do {
                        Entry<K,V> next = e.next;
                        int i = indexFor(e.hash, newCapacity);
                        e.next = newTable[i];
                        newTable[i] = e;
                        e = next;
                    } while (e != null);
                }
            }
        }
     tranfer方法将所有的元素重新哈希,因为新的容量变大,所以每个元素的哈希值和位置都是不一样的。

     

  8. 如何寻找元素

     

    通 过上面代码的分析,应该可以很清楚的看到,HashMap的元素查找大致分为三步:

    根据key的hasocde()得到哈希值

    根据哈希值确定元素在数组中的位置

    找到指定位置 的链表,循环比较,先“==”比较,如果不等,再“equals”比较,如果有一个比较相等,就说明找到元素了。

    所以说到这里,我想大家也明白了,为什么要把一个对象放进HashMap的时候,最好是重写hashcode()方法和equals 方法呢?根据前面的分析,hashcode()可以确定元素在数组中的位置,而equals方法在链表的比较时要用到。

     

  9. 正确的使用HashMap

1:不要在并发场景中使用HashMap

             HashMap是线程不安全的,如果被多个线程共享的操作,将会引发不可预知的问题,据sun的说法,在扩容时,会引起链表的闭环,在get元素时,就会无限循环,后果 是cpu100%。
看看get方法的红色部分

public V get(Object key) {

    if (key == null)
        return getForNullKey();
        int hash = hash(key.hashCode());
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }

 2:如果数据大小是固定的,那么最好给HashMap设定一个合理的容量值
        根据上面的分析,HashMap的初始默认容量是16,默认加载因子是0.75,也就是说,如果采用HashMap的默认构造函数,当增加数据时,数据实际容量超过10*0.75=12 时,HashMap就扩容,扩容带来一系列的运算,新建一个是原来容量2倍的数组,对原有元素全部重新哈希,如果你的数据有几千几万个,而用默认的HashMap构造函 数,那结果是非常悲剧的,因为HashMap不断扩容,不断哈希,在使用HashMap的场景里,不会是多个线程共享一个HashMap,除非对HashMap包装并同步,由此产生的内 存开销和cpu开销在某些情况下可能是致命的。

 

 

 

 

 

 

 

 

 

 

2011-02-24 david.wang

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值