好几个月没写总结了,学习一些收费课程也担心摘用内容不太合适。刚好有道习题是LeetCode上的题目,虽然不难,我理解还是花了好长一段时间,特此记录下。
题目介绍
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii
拆解题目后,包含两个过程
- 链表是否存在环
- 查找入环的第一个节点
链表是否存在环,其实比较好理解,要么遍历一个节点就存储一个到Set,要么就是用快慢指针。我觉得理解下快慢指针是最好的,Set依赖于其他的数据结构,和环本身关联性可能没这么强。
当确定链表内存在环后,需要查找入环的第一个节点。同时用Set也好解决,第一个重复的节点就是入环节点。那么如何利用快慢指针找节点,就是一个麻烦事儿(其实也不麻烦)。
看答案做法是当快慢指针相遇,慢指针重新指向头节点,此时快慢节点都以一次一个节点的速度前进,当它们再次相遇时,即为入环第一个节点。
转换成代码,就是几行的量,可惜这个过程起初实在理解不了,后来发现这是一个数学题,如果从结果反推,其实还是很好理解的。
理解过程
假设前提:
- 链表非环节点长度t;
- 链表环节点长度c;
- slow节点每次前进一个位置,fast节点每次前进两个位置;
- 快慢指针同时从头节点出发,慢指针恰好在入环口时,定义快指针在环中的位置为h。
slow走了t步,fast走了t+h+nc步(fast也许已经绕环多圈,n表示绕环圈数,n>=0)。因为fast是slow的2倍速,所以
2t = t + nc +h;
t = nc + h
此时slow领先fast的c-h个节点。
slow走c-h节点,fast走2(c-h)个节点时,快慢指针相遇。
进行反证明:slow节点重新指向头节点处,一次向前位移一个节点,fast节点从当前位置一次向前位移一个节点,两个节点将在入环节点处相遇。
上面已经推导出:t = nc + h
fast节点到入环节点的距离为h,因为第一次向前位置h次到达入环节点时,slow可能还在路上,所以fast以入环处为起点绕环n次(n>=0)n*c,一定会和slow节点相遇在入环节点处。