LeetCode 142. 环形链表 II总结

好几个月没写总结了,学习一些收费课程也担心摘用内容不太合适。刚好有道习题是LeetCode上的题目,虽然不难,我理解还是花了好长一段时间,特此记录下。

题目介绍

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。

说明:不允许修改给定的链表。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii


拆解题目后,包含两个过程

  1. 链表是否存在环
  2. 查找入环的第一个节点

链表是否存在环,其实比较好理解,要么遍历一个节点就存储一个到Set,要么就是用快慢指针。我觉得理解下快慢指针是最好的,Set依赖于其他的数据结构,和环本身关联性可能没这么强。

当确定链表内存在环后,需要查找入环的第一个节点。同时用Set也好解决,第一个重复的节点就是入环节点。那么如何利用快慢指针找节点,就是一个麻烦事儿(其实也不麻烦)。
看答案做法是当快慢指针相遇,慢指针重新指向头节点,此时快慢节点都以一次一个节点的速度前进,当它们再次相遇时,即为入环第一个节点。

转换成代码,就是几行的量,可惜这个过程起初实在理解不了,后来发现这是一个数学题,如果从结果反推,其实还是很好理解的。

理解过程

假设前提:

  1. 链表非环节点长度t;
  2. 链表环节点长度c;
  3. slow节点每次前进一个位置,fast节点每次前进两个位置;
  4. 快慢指针同时从头节点出发,慢指针恰好在入环口时,定义快指针在环中的位置为h。
    当slow节点刚好入环

slow走了t步,fast走了t+h+nc步(fast也许已经绕环多圈,n表示绕环圈数,n>=0)。因为fast是slow的2倍速,所以
2t = t + nc +h;
t = nc + h
此时slow领先fast的c-h个节点。

快慢指针相遇

slow走c-h节点,fast走2(c-h)个节点时,快慢指针相遇。

进行反证明:slow节点重新指向头节点处,一次向前位移一个节点,fast节点从当前位置一次向前位移一个节点,两个节点将在入环节点处相遇。

上面已经推导出:t = nc + h

fast节点到入环节点的距离为h,因为第一次向前位置h次到达入环节点时,slow可能还在路上,所以fast以入环处为起点绕环n次(n>=0)n*c,一定会和slow节点相遇在入环节点处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值