leetcode_question_73 Set Matrix Zeroes

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.

Follow up:

Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

原来以为矩阵只要有一个0,就会把这一行和这一列置为0,进而整个矩阵为0.所以只要找矩阵中是否存在0就可以了。但是不知这样的,只是根据原矩阵的0而不是置0之后重新扫描矩阵,只和原矩阵中0有关。

O(m + n) space:

void setZeroes(vector<vector<int> > &matrix) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int row = matrix.size();
        if(row == 0) return;
        int col = matrix[0].size();
        if(col == 0) return;
        
        bool* record = new bool[row+col];
        memset(record,false,row+col);
        for(int i = 0; i < row; ++i)
            for(int j = 0; j < col; ++j){
                if(matrix[i][j] == 0) {
                    record[i] = 1;
                    record[row+j] = 1;
                }
            }
            
        for(int i = 0; i < row; ++i)
            if(record[i]){
                for(int j = 0; j < col; ++j)
                    matrix[i][j] = 0;
            }
        for(int j = row; j < row+col; ++j)
            if(record[j]){
                for(int i = 0; i < row; ++i)
                    matrix[i][j-row] = 0;
            }
    }

Constant Space:

常数空间的话,第一可以考虑是不是固定数量的几个变量能搞定;否则可以考虑是不是问题本身已经提供了足够的空间。
这道题属于后者,就是利用矩阵的第一行和第一列来作为辅助空间使用。不用开辟新的存储空间。方法就是:
1.先确定第一行和第一列是否需要清零
即,看看第一行中是否有0,记下来。也同时记下来第一列中有没有0。

2.扫描剩下的矩阵元素,如果遇到了0,就将对应的第一行和第一列上的元素赋值为0
这里不用担心会将本来第一行或第一列的1改成了0,因为这些值最后注定要成为0的,比如matrix[i][j]==0,那么matrix[i][0]处在第i行,matrix[0][j]处于第j列,最后都要设置为0的。

3.根据第一行和第一列的信息,已经可以将剩下的矩阵元素赋值为结果所需的值了即,拿第一行为例,如果扫描到一个0,就将这一列都清0.

4.根据1中确定的状态,处理第一行和第一列。
如果最开始得到的第一行中有0的话,就整行清零。同理对列进行处理。


void setZeroes(vector<vector<int> > &matrix) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int row = matrix.size();
        if(row == 0) return;
        int col = matrix[0].size();
        if(col == 0) return;
        
        bool firstrowiszero = false;
        bool firstcoliszero = false;
        for(int j = 0; j < col; ++j)
            if(matrix[0][j] == 0){
                firstrowiszero = true;
                break;
            }
        for(int i = 0; i < row; ++i)
            if(matrix[i][0] == 0){
                firstcoliszero = true;
                break;
            }
        
        for(int i = 1; i < row; ++i)
            for(int j = 1; j < col; ++j){
                if(matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
            
        for(int i = 1; i < row; ++i)
            for(int j = 1; j < col; ++j)
                if(matrix[i][0] == 0 || matrix[0][j] == 0)
                    matrix[i][j] = 0;
        
        if(firstrowiszero){
            for(int j = 0; j < col; ++j)
                matrix[0][j] = 0;
        }
        if(firstcoliszero){
            for(int i = 0; i < row; ++i)
                matrix[i][0] = 0;
        }
    }




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值