蛋白质亚细胞定位预测方法的性能评估
1. GOASVM的性能
1.1 与Euk - OET - PLoc对比
GOASVM在预测新蛋白质方面明显优于Euk - OET - PLoc。在相关实验中,GOASVM的准确率达到72.20%,而Euk - OET - PLoc仅为55.43%。当允许使用更远缘的同源物在GOA数据库中搜索GO术语时,能提高为每个新蛋白质找到至少一个GO术语的机会,从而提升整体性能。特别是当最远缘的同源物排名为7(kmax = 7)时,GOASVM能为所有新蛋白质找到GO术语,且准确率最高,比仅使用排名最高的同源物时高出近15%。
1.2 与基于其他特征的方法对比
在EU16数据集上,对GOASVM使用不同特征和不同SVM分类器的性能进行了测试,结果如下表所示:
| 分类器 | 特征 | 后处理 | OMCC | WAMCC | ACC |
| — | — | — | — | — | — |
| RBF SVM | AA | 向量范数 | 0.3846 | 0.3124 | 42.30% |
| RBF SVM | AA + PairAA | 向量范数 | 0.4119 | 0.3342 | 44.86% |
| 线性SVM | AA + PairAA + GapAA(48) | 向量范数 | 0.4524 | 0.3797 | 48.66% |
| RBF SVM | PseAA | 向量范数 | 0.4185 | 0.3467 | 45.48% |
| 线性SVM | 轮廓向量 | 几何平均 | 0.5149 | 0.4656 | 54.52% |
订阅专栏 解锁全文
2

被折叠的 条评论
为什么被折叠?



