docker8compose
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
18、用于活动预测的时间序列建模
本文提出了一种用于多变量时间序列(m.t.s)早期分类的新型方法,结合MD-MPP模型与顺序线索(Sequential Cue)模型,有效捕捉时间动态及变量间的相关性。通过在CMU人体动作和UCI手语数据集上的实验验证,该方法在不同观察比例下均显著优于现有技术,尤其在早期阶段表现出高预测精度。研究还分析了数据集可预测性、顺序模式的作用以及特定动作的识别难点,展示了其在人机交互与体感游戏等场景的应用前景。原创 2025-11-17 10:27:53 · 14 阅读 · 0 评论 -
17、基于多元时间序列的人类活动早期分类方法
本文提出了一种基于多元时间序列(m.t.s.)的人类活动早期分类方法,通过将活动观测建模为多元标记点过程(Multi-MPP),并引入多级离散标记点过程(MD-MPP)来捕捉时间动态与强度信息。方法结合时间动态模型与顺序线索模型(基于PST/VMM),实现对未完成活动的高效准确识别。在真实数据集上的评估表明,该方法在分类准确率和响应速度方面均表现优异,适用于人机交互、体感游戏和智能监控等时间敏感场景。原创 2025-11-16 09:08:05 · 18 阅读 · 0 评论 -
16、人类活动预测:基于动作单元和预测累积函数的方法
本文提出了一种基于动作单元和预测累积函数(PAF)的人类活动预测方法。该方法通过构建上下文感知因果模型(如PST)捕捉动作间的时序依赖关系,并利用频繁序列模式挖掘上下文线索,特别是交互对象信息。引入的PAF函数可量化活动的可预测性,进而提升预测性能。实验在多个数据集(如MHOI、MPII-Cooking、网球比赛和传感器数据集)上验证了该方法的有效性,结果表明其在中级和高级复杂活动预测中均优于传统方法,尤其在结合上下文信息后显著提升了准确率。该框架适用于具有层次化或重复结构的活动预测任务。原创 2025-11-15 15:03:31 · 15 阅读 · 0 评论 -
15、动作单元与活动预测:原理、方法与应用
本文探讨了基于动作单元的人类活动预测方法,涵盖仅动作预测和上下文感知预测两种场景。通过Harris角点与光流技术进行动作单元检测,并采用PST模型构建因果关系,结合序列模式挖掘(SPM)和频繁项集分析实现上下文建模。在网球比赛、MHOI、MPII烹饪和UCI-OPPORTUNITY等多个数据集上的实验验证了方法的有效性,为智能监控、人机交互等应用提供了可行的预测框架。原创 2025-11-14 13:49:32 · 16 阅读 · 0 评论 -
14、长时复杂活动预测:从理论到实践
本文提出了一种用于长时长复杂活动预测的通用框架,通过将复杂活动表示为离散动作单元序列,并结合动作与上下文信息进行语义级理解与推理。框架包含视觉概念检测、仅基于动作的因果模型、上下文感知模型和可预测性模型四个核心组件。利用概率后缀树(PST)和序列模式挖掘(SPM)方法,有效建模动作间的因果关系与时序依赖,在两种实验场景中均显著优于对比模型,实现了对全局活动类别和局部动作单元的高准确率预测,为智能监控、体育分析和智能服务系统提供了有力支持。原创 2025-11-13 14:20:11 · 16 阅读 · 0 评论 -
13、动作预测:MTSSVM方法解析
本文介绍了MTSSVM方法在动作预测任务中的应用,该方法结合全局进度模型(GPM)和局部进度模型(LPM),在多时间尺度上捕捉动作动态,并利用动作随时间演变的先验知识构建单调分数函数。通过结构化支持向量机框架,MTSSVM实现了有原则的经验风险最小化,强制片段标签一致性以增强判别能力。实验表明,MTSSVM在UT-Interaction和BIT-Interaction等多个数据集上优于现有方法,尤其在部分观测条件下表现优异,验证了其在动作预测中的有效性与鲁棒性。原创 2025-11-12 14:05:25 · 17 阅读 · 0 评论 -
12、RGB-D动作识别与活动预测技术解析
本文探讨了RGB-D动作识别与活动预测的前沿技术。在RGB-D动作识别方面,提出一种新颖的迁移学习方法,通过将深度信息从源数据转移到目标RGB数据中,显著提升识别性能,并大幅缩短训练时间。在活动预测方面,提出多时间尺度支持向量机(MTSSVM),能够基于部分观察视频进行早期动作分类,具备多尺度信息捕捉、标签一致性约束和考虑数据渐进性等优势。该方法在智能监控、自动驾驶和医疗康复监测等场景中具有广泛应用前景。实验表明,所提方法在多个指标上优于现有主流方法,为动作理解任务提供了高效且鲁棒的解决方案。原创 2025-11-11 13:40:05 · 17 阅读 · 0 评论 -
11、基于潜低秩张量迁移学习的 RGB-D 动作识别方法
本文提出一种基于潜低秩张量迁移学习的RGB-D动作识别方法,通过将RGB和深度数据建模为高阶张量,利用源域完整模态数据向目标域单模态数据迁移知识。该方法引入潜低秩约束以恢复目标域缺失的深度信息,并设计跨模态正则化器增强RGB与深度模态间的关联,提升动作识别性能。在MSR日常动作和配对动作3D数据库上的实验表明,该方法在多种测试设置下均优于传统迁移学习方法,尤其在目标域模态缺失场景中表现出色,具有良好的应用前景。原创 2025-11-10 13:15:52 · 15 阅读 · 0 评论 -
10、多模态与 RGB - D 动作识别方法解析
本文系统分析了多模态与RGB-D动作识别方法,对比了MDA、DATER、V-Tensor等在KTH和ETH数据集上的表现,探讨了MDA方法的收敛性、训练时间与判别有效性。针对传统RGB动作识别缺乏3D结构信息的问题,提出一种基于迁移学习的RGB-D动作识别新方法,通过从源域RGB-D数据中学习并转移RGB与深度信息的相关性,结合跨模态正则化器和低秩约束,有效补偿目标RGB数据中缺失的深度信息,提升识别性能。该方法实现了知识的自动发现与复用,缩小了不同数据库间的差距,为传统RGB数据库赋予了近似RGB-D的能原创 2025-11-09 13:14:16 · 20 阅读 · 0 评论 -
9、多模态动作识别中的模式驱动判别分析
本文提出了一种创新的模式驱动判别分析(MDA)方法,用于多模态动作识别。MDA在不同张量模式上采用针对性的判别准则:在图像模式使用Fisher准则,在序列模式进行相关分析,充分考虑各模式的视觉分布与现实意义。通过帧到帧重建策略挖掘时间或颜色维度上的相邻相关性,并结合交替投影优化框架实现降维与特征提取。理论证明MDA具有收敛性,实验在MSR 3D、KTH和ETH等多个数据集上验证了其有效性,在动作识别与对象识别任务中表现优异。该方法可拓展至医学影像、语音识别等领域,具有广泛的应用前景。原创 2025-11-08 13:13:56 · 15 阅读 · 0 评论 -
8、子空间学习与多模态动作识别
本文探讨了子空间学习在多模态动作识别中的应用,重点分析了基于张量的子空间学习模型STSL在LFW、AR、MovieLens和UCI等多个数据集上的实验表现。研究显示,STSL在分类准确性、解释方差、计算效率和稀疏性方面优于传统方法如CCA、SCCA、SPCA和TCCA。通过张量表示高维数据,有效降低了维度与计算成本,并提升了特征选择能力。结合张量分解分析(TDA),提出了一套完整的多模态动作识别流程,并通过实验验证其在准确率、召回率和F1值上的优越性能。未来工作将引入判别分析并优化多模态融合策略,拓展至智能原创 2025-11-07 12:07:14 · 14 阅读 · 0 评论 -
7、基于稀疏张量子空间学习的动作识别降维方法
本文提出了一种基于稀疏张量子空间学习(STSL)的降维方法,用于高维视觉数据如人体动作视频和人脸序列的识别任务。该方法通过张量表示克服传统向量化带来的维度灾难和高时间复杂度问题,并引入弹性网络替代套索惩罚,有效解决变量共线性与稀疏性之间的权衡。STSL采用双重稀疏策略,结合协方差结构与稀疏系数的奇异值分解来学习变换矩阵,实现关键帧选择与特征降维。实验在KTH动作数据集和LFW人脸数据集上验证了STSL在不同维度下的优越识别性能,相较于SPCA、SCCA等方法展现出更强的信息保留能力和分类准确性。原创 2025-11-06 10:55:59 · 14 阅读 · 0 评论 -
6、人类交互识别与人员分割的创新模型
本文提出一种基于潜在结构支持向量机的创新模型,用于联合识别人类交互与分割交互中的人员。该模型通过类特定结构模型和全局交互模型,在细粒度3D补丁级别建模外观与运动信息,实现高精度识别与人员分离。在UT-交互数据集上达到88.33%的准确率,优于多种现有方法。实验验证了各组件的重要性,并展示了其在复杂动作识别和遮挡处理中的优势。未来工作将聚焦于提升模型在复杂场景下的鲁棒性、实时性及多领域应用拓展。原创 2025-11-05 12:54:23 · 12 阅读 · 0 评论 -
5、人体交互识别方法解析
本文提出了一种基于交互短语和补丁感知模型的人体交互识别方法,通过引入属性模型与交互模型间的相互依赖关系,在BIT-Interaction数据集上实现了85.16%的准确率。方法利用3D时空局部特征和虚拟视频词有效区分前景与背景,并通过交互短语的语义描述增强对复杂交互动作的理解。实验验证了各组件的有效性,尤其在应对遮挡和复杂背景方面表现突出。文章还探讨了该方法在安防监控、智能养老和人机交互等场景的应用潜力,并指出了未来在多模态融合、实时识别和通用模型构建方面的研究方向。原创 2025-11-04 11:08:13 · 15 阅读 · 0 评论 -
4、动作识别与人类交互研究
本文提出了一种基于交互短语的人类交互识别方法,通过构建属性模型和交互模型,充分利用人与人之间的运动关系和上下文信息,有效提升了复杂场景下交互行为的识别准确性和鲁棒性。实验结果表明,该方法在自建的BIT-Interaction数据集上显著优于传统方法,并在智能监控、人机交互、虚拟现实等领域具有广泛的应用前景。未来工作将聚焦于改进特征提取、融合多模态信息和拓展数据集以进一步提升性能。原创 2025-11-03 10:44:22 · 12 阅读 · 0 评论 -
3、人类活动识别:挑战与解决方案
本文针对人类交互识别中的两大挑战——共现信息不足和密切交互带来的身体遮挡与特征分配歧义,提出了两种有效方法。其一,引入交互式短语作为中级语义描述,融合人类动作知识以更好表达复杂交互;其二,学习有区分性的时空补丁,提升人物分离能力,获得更干净的特征表示。结合RGB-D数据集分析与流程图示,展示了方法的有效性。未来方向包括多模态信息融合、模型优化及在智能监控、人机交互等场景的应用拓展。原创 2025-11-02 13:08:01 · 14 阅读 · 0 评论 -
2、活动识别与分类技术全解析
本文全面解析了计算机视觉中的活动识别与分类技术,涵盖了分层方法、群体动作分类器、RGB-D视频分类器及动作预测器等核心分类方法,并系统介绍了个人动作、群体动作、无约束场景及RGB-D动作视频的常用数据集。文章进一步分析了不同方法的适用场景与数据集选择策略,提出了流程优化建议,并展望了多模态融合、深度学习深化、实时性与可解释性提升以及跨领域应用拓展等未来发展趋势,为活动识别的研究与应用提供了系统性参考。原创 2025-11-01 10:27:21 · 15 阅读 · 0 评论 -
1、人类活动识别与预测技术全解析
本文全面解析了人类活动识别与预测技术,涵盖其基本概念、核心挑战、主流视频表示方法(全局特征、局部特征、深度学习特征)以及个体动作分类器的分类体系。文章深入探讨了类内类间变化、背景噪声、数据不足等关键问题,并介绍了应对策略如判别性特征设计、相机运动补偿、半监督与迁移学习。通过流程图与对比表格直观展示技术路径与方法优劣,进一步分析了动作预测的重要性及未来发展趋势,包括多模态融合、实时处理与可解释性模型,为智能监控、交通与健康等领域提供技术参考。原创 2025-10-31 16:17:47 · 14 阅读 · 0 评论
分享