1、OLAP系统建模方法
典型的数据仓库建模方法有ER模型、维度模型、Data Value、Anchor
**
2、维度模型
**
维度模型中,表被分为维度表、事实表、维度是对事实的一种组织
维度一般包含分类、时间、地域等
维度模型分为:星型模型、雪花模型、星座模型
维度模型建立后,方便对数据进行多维分析
**
2.1、星型模型
**
标准的星型模型,维度只有一层,分析性能最优
2.2、雪花模型
雪花模型具有多层维度,比较接近三范式设计,较为灵活
2.3、星座模型
星座模型基于多个事实表,事实表之间会共享一些维度表
是大型数据仓库中的常态,是业务增长的结果,与模型设计无关
3、ROLAP
什么是宽表模型?
宽表模型是维度模型的衍生,适合join性能不佳的数据仓库产品;
宽表模型将维度冗余到事实表中,形成宽表,以此减少join操作。
4、MOLAP
MOLAP将数据进行预计算,并将聚合结果存储都CUBE模型中;
CUBE模型以多维数组的形式,物化到存储系统中,加快后续查询;
生成CUBE需要大量时间、空间,维度预处理可能会导致数据膨胀。
5、多维分析
OLAP多维分析
OLAP主要操作是复杂查询,可以多表关联,使用count、sum、avg等聚合函数;
OLAP对复杂查询操作做了直观定义,包括钻取、切片、切块、旋转。