Description
现在请求你维护一个数列,要求提供以下两种操作: 1、 查询操作。语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。 2、 插入操作。语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长整范围内。注意:初始时数列是空的,没有一个数。
Input
第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足(0
Output
对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。
Sample Input
5 100
A 96
Q 1
A 97
Q 1
Q 2
Sample Output
96
93
96
HINT
Source
线段树维护就行,A操作:改变n位置上的数;Q操作:查询[n-x+1,n]内的最大值。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INT_MIN -2147483647
int n,m,t,mod,tree[(1<<20)-1];
void in(int &x)
{
int f=1;char t=getchar();x=0;
while((t<48)or(t>57)){if(t=='-')f=-1;t=getchar();}
while((t>=48)and(t<=57)){x=x*10+t-48;t=getchar();}
x*=f;
}
void build(int now,int l,int r)
{
tree[now]=INT_MIN;if (l==r) return;
int mid=(l+r)>>1,lch=(now<<1),rch=(now<<1)+1;
build(lch,l,mid);build(rch,mid+1,r);
}
void add(int now,int l,int r,int loc,int num)
{
if (l==r){tree[now]=num;return;}
int mid=(l+r)>>1,lch=(now<<1),rch=(now<<1)+1;
if (loc<=mid) add(lch,l,mid,loc,num);
else add(rch,mid+1,r,loc,num);
tree[now]=max(tree[lch],tree[rch]);
}
int query(int now,int l,int r,int lrange,int rrange)
{
if ((lrange<=l)and(r<=rrange)) return tree[now];
int mid=(l+r)>>1,lch=(now<<1),rch=(now<<1)+1,ans=INT_MIN;
if (lrange<=mid) ans=max(ans,query(lch,l,mid,lrange,rrange));
if (rrange>mid) ans=max(ans,query(rch,mid+1,r,lrange,rrange));
return ans;
}
int main()
{
in(m),in(mod);build(1,1,m);
for (int i=1;i<=m;++i)
{
char work=getchar();int x;in(x);
if (work=='A')
{
x=(x+t)%mod;
++n;add(1,1,m,n,x);
}
else printf("%d\n",t=query(1,1,m,n-x+1,n));
}
return 0;
}