吴恩达深度学习笔记
吴恩达深度学习这门课程的笔记,主要是记录、提炼一些目前觉得比较有用的内容,并参考网上的相关资料,加了一些自己的思考。
Dod_Jdi
Don't delay,Just do it!
展开
-
吴恩达深度学习笔记六:序列模型
周末出去耍了一下,回来又玩了两天游戏,耽误了好多时间啊,关键是连输20多局。哎,以后还是少玩游戏,多去做些有趣的事情吧,免得费时费力还不开心。1、 循环神经网络(RNN:Recurrent Neural Network)序列模型(sequence model):处理语言和音视频等前后相互关联的数据。和CNN卷积模型处理相对独立的输入和输出不同,序列模型处理的是具有较强相关性的连续序列。序列...原创 2018-03-26 23:09:57 · 799 阅读 · 0 评论 -
吴恩达深度学习笔记五:卷积神经网络 人脸识别和风格迁移部分
1、人脸识别人脸验证(Face Verification):输入图片和模板图片是否为同一人,一对一问题。 人脸识别(Face Recognition):输入图片,检测是否为多个模板图片中的一个,一对多问题。一般来说,人脸验证由于范围较小难度较小,而人脸识别需要进行一对多的比对难度较大准确率也较低。One-Shot Learning: 由于人脸数据库的容量 K 并不固定,如果使用以前的...原创 2018-03-23 22:26:50 · 895 阅读 · 0 评论 -
吴恩达深度学习笔记四:卷积神经网络 基础和目标检测部分
1、卷积神经网络(CNN:Convolutional neural network):卷积运算:矩阵对应位元素相乘然后相加,主要作用是特征提取和减少参数。深度学习中使用的是“互相关”卷积,即不进行偏转的卷积。滤波器(fliter):也叫“核(kernel)”,使用具有不同参数的滤波器可以检测图片中 垂直、水平边缘等 特征。两个重要的特征,可以有效解决计算机视觉等存在的参数过多速度慢...原创 2018-03-20 09:45:51 · 1048 阅读 · 0 评论 -
吴恩达深度学习笔记三:结构化机器学习项目
1、正交化正交化:每次调整对某一性能进行针对性调试和优化,更快地发现影响效应,从而进行综合性的优化。一个好的模型最好能够同时在训练集,验证集,测试集和实际应用中表现良好,如果: 情况 解决办法 在训练集上表现不好 尝试更大的神经网络或者使用更好的优化算法(如Adam) 在验证集上表现不好 尝试获取更多的训练数据或者加入正则化 在测试集上表现...原创 2018-03-16 22:02:13 · 979 阅读 · 0 评论 -
吴恩达深度学习笔记二:超参数调试、正则化以及优化
第一周 深度学习的实用层面 1. 数据集划分训练集:用以对算法进行训练,更新参数。 验证集:用以训练过程检验模型和数据的拟合程度,可省略 测试集:训练完成后评估模型所用的数据集划分:1、无验证集时,训练集:测试集 = 7:3 2、训练集:验证集:测试集 = 6:2:2 2. bias-variance, 偏差和方差偏差bias:描述模型对训练集的拟...原创 2018-03-12 22:25:22 · 3255 阅读 · 0 评论 -
吴恩达深度学习笔记一:神经网络和深度学习
1. 梯度下降中的一些计算 第一个框:logistic回归方程的代价函数的导数dj/dz 可认为是a-y 第二个框:前一级变量的导数为后一级变量导数乘以其系数。 另外求dZ和dA不需要进行 ”/m” 操作# dA/dA_pre = ...原创 2018-03-01 16:05:02 · 579 阅读 · 0 评论