Python-爬虫(Scrapy爬虫框架,爬取豆瓣读书和评分)

1.Scrapy注意点

Scrapy是爬虫框架。

它分为一下部分,其中引擎是核心

  1. Scrapy Engine(引擎):负责spider、ltemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。
  2. Scheduler(调度器):它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。默认使用16个线程爬取数据
  3. Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给spider来处理。
  4. Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取ltem字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)。
  5. ltem Pipeline(管道):它负责处理Spider中获取到的ltem,并进行后期处理(详细分析、过滤、存储等)的地方。(将爬虫爬取到的数据进行存储)
  6. Downloader Middlewares(下载中间件):一个可以自定义扩展下载功能的组件。
  7. Spider Middlewares (Spider中间件):一个可以自定扩展和操作引擎和spider中间通信的功能组件。

通过pip install scrapy在终端上下载这个爬虫框架。

注意:框架不能像包一样直接导入,需要生成框架结构,在这个结构上操作

启动框架:

首先在终端上进入到要生成项目的路径.

然后输入scrapy startproject 项目名启动框架
在这里插入图片描述
此时项目路径下会有一个框架生成的文件夹

在这里插入图片描述

之后生成爬虫文件命令如图:
在这里插入图片描述

先进入爬虫spiders文件夹中,输入scrapy genspider 爬虫文件名称 爬取网页的链接命令生成爬虫文件。这里以豆瓣读书为例

在这里插入图片描述

最后使用scrapy crawl +爬虫名(book)来启动爬虫,因为在终端不方便数据查询,所以一般会使用其他方式启动。

这里创建新文件运行这个命令
在这里插入图片描述
运行结果scrapy日志信息是红色输出,网页源码以白色输出。

2. Scrapy爬取豆瓣读书和评分

scrapy爬取基本流程如下:

  1. 设置爬虫基础参数 settings.py
  2. 爬虫
  3. 数据封装
  4. 管道

设置爬虫基础参数
在这里插入图片描述
这里不遵守这个协议,否则爬取不到什么信息了。改成False

在这里插入图片描述
默认爬取的线程数,可以取消注释,并修改数目,默认16个线程。

在这里插入图片描述
爬取网页后暂停的时间数目,默认不暂停。

在这里插入图片描述
请求头,这里需要至少要修改成浏览器信息

在这里插入图片描述
设定保存优先级,数字越大,优先级越小。用于多种保存方式下,哪一种保存方式优先。

代码部分

数据定义items.py

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy


# 封装数据
class TestscrapyItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    rating_nums = scrapy.Field()

爬虫部分spiders/book.py

import scrapy
import re
from ..items import TestscrapyItem


class BookSpider(scrapy.Spider):
    name = 'book'  # 通过这个名字启动爬虫
    allowed_domains = ['book.douban.com']
    start_urls = ['https://book.douban.com/top250?start=0']

    def parse(self, response):
        # response是爬虫返回的网页数据
        # print(response.text)

        # 封装对象
        items = TestscrapyItem()

        title = re.findall('<a href=".*?" οnclick=.*?;moreurl.*?; title="(.*?)"', response.text)
        rating_nums = re.findall('<span class="rating_nums">(.*?)</span>', response.text)

        # print(rating_nums)
        # 封装数据给pipelines
        for title, rating_nums in zip(title, rating_nums):
            items['title'] = title
            items['rating_nums'] = rating_nums
            yield items #给pipelines

数据存储部分pipelines.py

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html


# useful for handling different item types with a single interface
from itemadapter import ItemAdapter


# 保存数据
class TestscrapyPipeline:
    def __init__(self):
        self.file = open('data.txt', 'w', encoding='utf-8')

    def process_item(self, item, spider):
        self.file.write(f"{item['title']}  评分:{item['rating_nums']}\n==========\n")
        return item  # 通知爬虫,这个数据已经保存成功了

    # 析构函数
    def __del__(self):
        self.file.close()
        print('文件保存成功')

启动爬虫执行cmd命令 start.py

import os

os.system('scrapy crawl book')

运行结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NUC_Dodamce

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值