第一题 自私的食草者(sgraze)
本题排序+DP
首先对S数组进行升序排列,则前i头奶牛的最大值f[i]=max{f[j]+1}(1<=j<i,S[i]>=E[j])
不难发现这与最长不下降子序列非常相似,只是多了一个数组而已。然而O(n^2)的复杂度对于50000来说显然有些吃力,于是可以想到利用最长不下降子序列的二分优化,将其降至O(nlongn),具体不再多说,给出代码:
#include<stdio.h>
int s[50000],e[50000],n,m[50001];
void quicksort(int l,int r)
{
int i=l,j=r,t;
int ch=s[(i+j)>>1];
while(i<=j)
{
while(s[i]<ch)i++;
while(s[j]>ch)j--;
if(i<=j)
{
t=s[i];s[i]=s[j];s[j]=t;
t=e[i];e[i]=e[j];e[j]=t;
i++;j--;
}
}
if(l<j)quicksort(l,j);
if(i<r)quicksort(i,r);
return;
}
int main()
{
FILE *fp1,*fp2;
fp1=fopen("sgraze.in","r");
fp2=fopen("sgraze.out","w");
int i,max=1,left,right,mid;
fscanf(fp1,"%d",&n);
for(i=0;i<n;i++)
fscanf(fp1,"%d%d",&s[i],&e[i]);
quicksort(0,n-1);
m[1]=e[0];
for(i=1;i<n;i++)
{
left=1;
right=max+1;
if(s[i]>=m[max]){max++;m[max]=e[i];continue;}
if(s[i]<m[1]){if(e[i]<m[1])m[1]=e[i];continue;}
//此处判断e[i]与m[1]的大小比不可少
while(left<right)
{
mid=(left+right)>>1;
if(s[i]>=m[mid]&&s[i]<m[mid+1])break;
if(s[i]>=m[mid])left=mid;
else right=mid;
}
if(e[i]<m[mid+1])m[mid+1]=e[i];
//此处判断e[i]与m[mid+1]的大小比不可少
}
fprintf(fp2,"%d\n",max);
return 0;
}
第二题 高山滑雪(bobsled)
本题贪心
显然根据前一个转弯处的最大速度v0和后一个速度限制vi以及它们之间的距离x,我们就可以求出该段的最大速度,从前往后推,若vi-v0>=s,则该段内可以一直加速,否则算出该段内的最大速度,具体推导过程不再给出,并更新v0。
但考虑这样一种情况,如果v0-vi>s怎么办,那就意味着我们需要更新前面的速度,这显然是不可行的,于是我们需要在一开始对最大速度数组进行处理,从后往前更新,若发现v[i-1]-v[i]>s,则更新v[i-1],最后注意处理最后一个转弯处至终点间的最大速度。
这样本题便得到了较好的解决了,但需要注意一点数据并未按顺序给出,因此一定要先排序。
#include<stdio.h>
int l,n,a[100001],b[100001];
void quicksort(int l,int r)
{
int i=l,j=r,t;
int ch=b[(i+j)>>1];
while(i<=j)
{
while(b[i]<ch)i++;
while(b[j]>ch)j--;
if(i<=j)
{t=a[i];a[i]=a[j];a[j]=t;
t=b[i];b[i]=b[j];b[j]=t;i++;j--;}
}
if(l<j)quicksort(l,j);
if(i<r)quicksort(i,r);
return ;
}
int main()
{
FILE *fp1,*fp2;
fp1=fopen("bobsled.in","r");
fp2=fopen("bobsled.out","w");
int i,j;
fscanf(fp1,"%d%d",&l,&n);
for(i=1;i<=n;i++)
fscanf(fp1,"%d%d",&b[i],&a[i]);
quicksort(1,n);
for(i=n;i>1;i--)
if(a[i-1]-a[i]>b[i]-b[i-1])
a[i-1]=a[i]+b[i]-b[i-1];
int v=1,max=1;
for(i=1;i<=n;i++)
{
if(a[i]-v>=b[i]-b[i-1])
{v+=b[i]-b[i-1];if(v>max)max=v;}
else
{v+=(a[i]+b[i]-b[i-1]-v)>>1;if(v>max)max=v;v=a[i];}
}
v+=l-b[n];
if(v>max)max=v;
fprintf(fp2,"%d",max);
return 0;
}
第三题 乐谱(mnotes)
本题由于N最大为50000,B最大为100000,因此不可能将每时刻所敲击的音阶数保存下来,那么就只能查找了,然而朴素的查找方法需要O(qn)显然对于1<=q<=50000,1<=n<=50000显然不行,但是因为每个音阶的初始时刻是严格单调增的,所以便可以用二分来处理,总的复杂度O(qlogn),这样本题便得到了比较好的解决。
#include<stdio.h>
int a[50002];
int main()
{
FILE *fp1,*fp2;
fp1=fopen("mnotes.in","r");
fp2=fopen("mnotes.out","w");
int n,i,q,left,right,mid,w;
fscanf(fp1,"%d%d",&n,&q);
for(i=2;i<=n+1;i++)
{
fscanf(fp1,"%d",&a[i]);
a[i]+=a[i-1];
}
while(q--)
{
fscanf(fp1,"%d",&w);
left=1;right=n+1;
while(left<right)
{
mid=(left+right)>>1;
if(a[mid]<=w&&w<a[mid+1])break;
if(a[mid]<=w)left=mid;
else right=mid;
}
fprintf(fp2,"%d\n",mid);
}
return 0;
}