python功能强大,但是目前最想尝试的是利用python爬取网络数据,觉得这个比较有意思,因此想先学习下网上python的爬虫教程。以下是转载自伯乐在线的文章,个人整合下,mark。之前已经看过了廖大大的python3教程,有一定的基础。
原文地址:
http://python.jobbole.com/81334/
一、综述
- Python urllib和urllib2 库的用法
urllib和urllib2库是学习Python爬虫最基本的库,利用这个库我们可以得到网页的内容,并对内容用正则表达式提取分析,得到我们想要的结果。这个在学习过程中我会和大家分享的。
- 正则表达式
Python正则表达式是一种用来匹配字符串的强有力的武器。它的设计思想是用一种描述性的语言来给字符串定义一个规则,凡是符合规则的字符串,我们就认为它“匹配”了,否则,该字符串就是不合法的。
二、爬虫基础了解
1.什么是爬虫
爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来。想抓取什么?这个由你来控制它咯。
比如它在抓取一个网页,在这个网中他发现了一条道路,其实就是指向网页的超链接,那么它就可以爬到另一张网上来获取数据。这样,整个连在一起的大网对这之蜘蛛来说触手可及,分分钟爬下来不是事儿。
2.浏览网页的过程
在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.baidu.com/ ,我们会看到几张的图片以及百度搜索框,这个过程其实就是用户输入网址之后,经过DNS服务器,找到服务器主机,向服务器发出一个请求,服务器经过解析之后,发送给用户的浏览器 HTML、JS、CSS 等文件,浏览器解析出来,用户便可以看到形形色色的图片了。
因此,用户看到的网页实质是由 HTML 代码构成的,爬虫爬来的便是这些内容,通过分析和过滤这些 HTML 代码,实现对图片、文字等资源的获取。
3.URL的含义
URL(Uniform Resource Locator),即统一资源定位符,也就是我们说的网址,统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址。互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该怎么处理它。
URL的格式由三部分组成:
①第一部分是协议(或称为服务方式)。
②第二部分是存有该资源的主机IP地址(有时也包括端口号)。
③第三部分是主机资源的具体地址,如目录和文件名等。
爬虫爬取数据时必须要有一个目标的URL才可以获取数据,因此,它是爬虫获取数据的基本依据,准确理解它的含义对爬虫学习有很大帮助。
- 环境的配置
学习Python,当然少不了环境的配置,最初我用的是Notepad++,不过发现它的提示功能实在是太弱了,于是,在Windows下我用了 PyCharm,在Linux下我用了Eclipse for Python,另外还有几款比较优秀的IDE,大家可以参考这篇文章 学习Python推荐的IDE 。好的开发工具是前进的推进器,希望大家可以找到适合自己的IDE
三、Urllib库的基本使用
怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它 是一段HTML代码,加 JS、CSS,如果把网页比作一个人,那么HTML便是他的骨架,JS便是他的肌肉,CSS便是它的衣服。所以最重要的部分是存在于HTML中的,下面我 们就写个例子来扒一个网页下来。
import urllib2
response = urllib2.urlopen("http://www.baidu.com")
print response.read()
是的你没看错,真正的程序就两行,把它保存成 demo.py,进入该文件的目录,执行如下命令查看运行结果,感受一下。
python demo.py
2.分析扒网页的方法
那么我们来分析这两行代码,第一行
response = urllib2.urlopen("http://www.baidu.com")
首先我们调用的是urllib2库里面的urlopen方法,传入一个URL,这个网址是百度首页,协议是HTTP协议,当然你也可以把HTTP换做FTP,FILE,HTTPS 等等,只是代表了一种访问控制协议,urlopen一般接受三个参数,它的参数如下:
urlopen(url, data, timeout)
第一个参数url即为URL,第二个参数data是访问URL时要传送的数据,第三个timeout是设置超时时间。
第二三个参数是可以不传送的,data默认为空None,timeout默认为 socket._GLOBAL_DEFAULT_TIMEOUT
第一个参数URL是必须要传送的,在这个例子里面我们传送了百度的URL,执行urlopen方法之后,返回一个response对象,返回信息便保存在这里面。
print response.read()
response对象有一个read方法,可以返回获取到的网页内容。
如果不加read直接打印会是什么?答案如下:
<addinfourl at 139728495260376 whose fp = <socket._fileobject object at 0x7f1513fb3ad0>>
直接打印出了该对象的描述,所以记得一定要加read方法,否则它不出来内容可就不怪我咯!
3.构造Requset
其实上面的urlopen参数可以传入一个request请求,它其实就是一个Request类的实例,构造时需要传入Url,Data等等的内容。比如上面的两行代码,我们可以这么改写
import urllib2
request = urllib2.Request("http://www.baidu.com")
response = urllib2.urlopen(request)
print response.read()
运行结果是完全一样的,只不过中间多了一个request对象,推荐大家这么写,因为在构建请求时还需要加入好多内容,通过构建一个request,服务器响应请求得到应答,这样显得逻辑上清晰明确。
4.POST和GET数据传送
上面的程序演示了最基本的网页抓取,不过,现在大多数网站都是动态网页,需要你动态地传递参数给它,它做出对应的响应。所以,在访问时,我们需要传递数据给它。最常见的情况是什么?对了,就是登录注册的时候呀。
把数据用户名和密码传送到一个URL,然后你得到服务器处理之后的响应,这个该怎么办?下面让我来为小伙伴们揭晓吧!
数据传送分为POST和GET两种方式,两种方式有什么区别呢?
最重要的区别是GET方式是直接以链接形式访问,链接中包含了所有的参数,当然如果包含了密码的话是一种不安全的选择,不过你可以直观地看到自己提交了什么内容。POST则不会在网址上显示所有的参数,不过如果你想直接查看提交了什么就不太方便了,大家可以酌情选择。
POST方式:
上面我们说了data参数是干嘛的?对了,它就是用在这里的,我们传送的数据就是这个参数data,下面演示一下POST方式。
import urllib
import urllib2
values = {"username":"1016903103@qq.com","password":"XXXX"}
data = urllib.urlencode(values)
url = "https://passport.csdn.net/account/login?from=http://my.csdn.net/my/mycsdn"
request = urllib2.Request(url,data)
response = urllib2.urlopen(request)
print response.read()
我们引入了urllib库,现在我们模拟登陆CSDN,当然上述代码可能登陆不进去,因为还要做一些设置头部header的工作,或者还有一些参数 没有设置全,还没有提及到在此就不写上去了,在此只是说明登录的原理。我们需要定义一个字典,名字为values,参数我设置了username和 password,下面利用urllib的urlencode方法将字典编码,命名为data,构建request时传入两个参数,url和data,运 行程序,即可实现登陆,返回的便是登陆后呈现的页面内容。当然你可以自己搭建一个服务器来测试一下。
注意上面字典的定义方式还有一种,下面的写法是等价的
import urllib
import urllib2
values = {}
values['username'] = "1016903103@qq.com"
values['password'] = "XXXX"
data = urllib.urlencode(values)
url = "http://passport.csdn.net/account/login?from=http://my.csdn.net/my/mycsdn"
request = urllib2.Request(url,data)
response = urllib2.urlopen(request)
print response.read()
以上方法便实现了POST方式的传送
GET方式:
至于GET方式我们可以直接把参数写到网址上面,直接构建一个带参数的URL出来即可。
import urllib
import urllib2
values={}
values['username'] = "1016903103@qq.com"
values['password']="XXXX"
data = urllib.urlencode(values)
url = "http://passport.csdn.net/account/login"
geturl = url + "?"+data
request = urllib2.Request(geturl)
response = urllib2.urlopen(request)
print response.read()
你可以print geturl,打印输出一下url,发现其实就是原来的url加?然后加编码后的参数
http://passport.csdn.net/account/login?username=1016903103%40qq.com&password=XXXX
和我们平常GET访问方式一模一样,这样就实现了数据的GET方式传送。
本节讲解了一些基本使用,可以抓取到一些基本的网页信息,小伙伴们加油!
四、Urllib库的高级用法
1.设置Headers
有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性。
首先,打开我们的浏览器,调试浏览器F12,我用的是Chrome,打开网络监听,示意如下,比如知乎,点登录之后,我们会发现登陆之后界面都变化 了,出现一个新的界面,实质上这个页面包含了许许多多的内容,这些内容也不是一次性就加载完成的,实质上是执行了好多次请求,一般是首先请求HTML文 件,然后加载JS,CSS 等等,经过多次请求之后,网页的骨架和肌肉全了,整个网页的效果也就出来了。
拆分这些请求,我们只看一第一个请求,你可以看到,有个Request URL,还有headers,下面便是response,图片显示得不全,小伙伴们可以亲身实验一下。那么这个头中包含了许许多多是信息,有文件编码啦,压缩方式啦,请求的agent啦等等。
其中,agent就是请求的身份,如果没有写入请求身份,那么服务器不一定会响应,所以可以在headers中设置agent,例如下面的例子,这个例子只是说明了怎样设置的headers,小伙伴们看一下设置格式就好。
import urllib
import urllib2
url = 'http://www.server.com/login'
user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
values = {'username' : 'cqc', 'password' : 'XXXX' }
headers = { 'User-Agent' : user_agent }
data = urllib.urlencode(values)
request = urllib2.Request(url, data, headers)
response = urllib2.urlopen(request)
page = response.read()
这样,我们设置了一个headers,在构建request时传入,在请求时,就加入了headers传送,服务器若识别了是浏览器发来的请求,就会得到响应。
另外,我们还有对付”反盗链”的方式,对付防盗链,服务器会识别headers中的referer是不是它自己,如果不是,有的服务器不会响应,所以我们还可以在headers中加入referer
例如我们可以构建下面的headers
headers = { 'User-Agent' : 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)' ,
'Referer':'http://www.zhihu.com/articles' }
同上面的方法,在传送请求时把headers传入Request参数里,这样就能应付防盗链了。
另外headers的一些属性,下面的需要特别注意一下:
- User-Agent : 有些服务器或 Proxy 会通过该值来判断是否是浏览器发出的请求
- Content-Type : 在使用 REST 接口时,服务器会检查该值,用来确定 HTTP Body 中的内容该怎样解析。
- application/xml : 在 XML RPC,如 RESTful/SOAP 调用时使用
- application/json : 在 JSON RPC 调用时使用
- application/x-www-form-urlencoded : 浏览器提交 Web 表单时使用
在使用服务器提供的 RESTful 或 SOAP 服务时, Content-Type 设置错误会导致服务器拒绝服务
其他的有必要的可以审查浏览器的headers内容,在构建时写入同样的数据即可。
- Proxy(代理)的设置
urllib2 默认会使用环境变量 http_proxy 来设置 HTTP Proxy。假如一个网站它会检测某一段时间某个IP 的访问次数,如果访问次数过多,它会禁止你的访问。所以你可以设置一些代理服务器来帮助你做工作,每隔一段时间换一个代理,网站君都不知道是谁在捣鬼了,这酸爽!
下面一段代码说明了代理的设置用法
import urllib2
enable_proxy = True
proxy_handler = urllib2.ProxyHandler({"http" : 'http://some-proxy.com:8080'})
null_proxy_handler = urllib2.ProxyHandler({})
if enable_proxy:
opener = urllib2.build_opener(proxy_handler)
else:
opener = urllib2.build_opener(null_proxy_handler)
urllib2.install_opener(opener)
3.Timeout 设置
上一节已经说过urlopen方法了,第三个参数就是timeout的设置,可以设置等待多久超时,为了解决一些网站实在响应过慢而造成的影响。
例如下面的代码,如果第二个参数data为空那么要特别指定是timeout是多少,写明形参,如果data已经传入,则不必声明。
import urllib2
response = urllib2.urlopen('http://www.baidu.com', timeout=10)
import urllib2
response = urllib2.urlopen('http://www.baidu.com',data, 10)
4.使用 HTTP 的 PUT 和 DELETE 方法
http协议有六种请求方法,get,head,put,delete,post,options,我们有时候需要用到PUT方式或者DELETE方式请求。
PUT:这个方法比较少见。HTML表单也不支持这个。本质上来讲, PUT和POST极为相似,都是向服务器发送数据,但它们之间有一个重要区别,PUT通常指定了资源的存放位置,而POST则没有,POST的数据存放位置由服务器自己决定。
DELETE:删除某一个资源。基本上这个也很少见,不过还是有一些地方比如amazon的S3云服务里面就用的这个方法来删除资源。
如果要使用 HTTP PUT 和 DELETE ,只能使用比较低层的 httplib 库。虽然如此,我们还是能通过下面的方式,使 urllib2 能够发出 PUT 或DELETE 的请求,不过用的次数的确是少,在这里提一下。
import urllib2
request = urllib2.Request(uri, data=data)
request.get_method = lambda: 'PUT' # or 'DELETE'
response = urllib2.urlopen(request)
5.使用DebugLog
可以通过下面的方法把 Debug Log 打开,这样收发包的内容就会在屏幕上打印出来,方便调试,这个也不太常用,仅提一下
import urllib2
httpHandler = urllib2.HTTPHandler(debuglevel=1)
httpsHandler = urllib2.HTTPSHandler(debuglevel=1)
opener = urllib2.build_opener(httpHandler, httpsHandler)
urllib2.install_opener(opener)
response = urllib2.urlopen('http://www.baidu.com')
以上便是一部分高级特性,前三个是重要内容,在后面,还有cookies的设置还有异常的处理,小伙伴们加油!
五、URLError异常处理
大家好,本节在这里主要说的是URLError还有HTTPError,以及对它们的一些处理。
1.URLError
首先解释下URLError可能产生的原因:
网络无连接,即本机无法上网
连接不到特定的服务器
服务器不存在
在代码中,我们需要用try-except语句来包围并捕获相应的异常。下面是一个例子,先感受下它的风骚
import urllib2
requset = urllib2.Request('http://www.xxxxx.com')
try:
urllib2.urlopen(requset)
except urllib2.URLError, e:
print e.reason
我们利用了 urlopen方法访问了一个不存在的网址,运行结果如下:
[Errno 11004] getaddrinfo failed
它说明了错误代号是11004,错误原因是 getaddrinfo failed
2.HTTPError
HTTPError是URLError的子类,在你利用urlopen方法发出一个请求时,服务器上都会对应一个应答对象response,其中它包含一个数字”状态码”。举个例子,假如response是一个”重定向”,需定位到别的地址获取文档,urllib2将对此进行处理。
其他不能处理的,urlopen会产生一个HTTPError,对应相应的状态吗,HTTP状态码表示HTTP协议所返回的响应的状态。下面将状态码归结如下:
- 100:继续 客户端应当继续发送请求。客户端应当继续发送请求的剩余部分,或者如果请求已经完成,忽略这个响应。
- 101: 转换协议 在发送完这个响应最后的空行后,服务器将会切换到在Upgrade
消息头中定义的那些协议。只有在切换新的协议更有好处的时候才应该采取类似措施。 - 102:继续处理 由WebDAV(RFC 2518)扩展的状态码,代表处理将被继续执行。
- 200:请求成功 处理方式:获得响应的内容,进行处理
- 201:请求完成,结果是创建了新资源。新创建资源的URI可在响应的实体中得到 处理方式:爬虫中不会遇到
- 202:请求被接受,但处理尚未完成 处理方式:阻塞等待
- 204:服务器端已经实现了请求,但是没有返回新的信 息。如果客户是用户代理,则无须为此更新自身的文档视图。 处理方式:丢弃
- 300:该状态码不被HTTP/1.0的应用程序直接使用, 只是作为3XX类型回应的默认解释。存在多个可用的被请求资源。
处理方式:若程序中能够处理,则进行进一步处理,如果程序中不能处理,则丢弃 - 301:请求到的资源都会分配一个永久的URL,这样就可以在将来通过该URL来访问此资源 处理方式:重定向到分配的URL
- 302:请求到的资源在一个不同的URL处临时保存 处理方式:重定向到临时的URL
- 304:请求的资源未更新 处理方式:丢弃
- 400:非法请求 处理方式:丢弃
- 401:未授权 处理方式:丢弃
- 403:禁止 处理方式:丢弃
- 404:没有找到 处理方式:丢弃
- 500:服务器内部错误
服务器遇到了一个未曾预料的状况,导致了它无法完成对请求的处理。一般来说,这个问题都会在服务器端的源代码出现错误时出现。 - 501:服务器无法识别 服务器不支持当前请求所需要的某个功能。当服务器无法识别请求的方法,并且无法支持其对任何资源的请求。
- 502:错误网关 作为网关或者代理工作的服务器尝试执行请求时,从上游服务器接收到无效的响应。
- 503:服务出错 由于临时的服务器维护或者过载,服务器当前无法处理请求。这个状况是临时的,并且将在一段时间以后恢复。
HTTPError实例产生后会有一个code属性,这就是是服务器发送的相关错误号。
因为urllib2可以为你处理重定向,也就是3开头的代号可以被处理,并且100-299范围的号码指示成功,所以你只能看到400-599的错误号码。
下面我们写一个例子来感受一下,捕获的异常是HTTPError,它会带有一个code属性,就是错误代号,另外我们又打印了reason属性,这是它的父类URLError的属性。
import urllib2
req = urllib2.Request('http://blog.csdn.net/cqcre')
try:
urllib2.urlopen(req)
except urllib2.HTTPError, e:
print e.code
print e.reason
运行结果如下
403
Forbidden
错误代号是403,错误原因是Forbidden,说明服务器禁止访问。
我们知道,HTTPError的父类是URLError,根据编程经验,父类的异常应当写到子类异常的后面,如果子类捕获不到,那么可以捕获父类的异常,所以上述的代码可以这么改写
import urllib2
req = urllib2.Request('http://blog.csdn.net/cqcre')
try:
urllib2.urlopen(req)
except urllib2.HTTPError, e:
print e.code
except urllib2.URLError, e:
print e.reason
else:
print "OK"
如果捕获到了HTTPError,则输出code,不会再处理URLError异常。如果发生的不是HTTPError,则会去捕获URLError异常,输出错误原因。
另外还可以加入 hasattr属性提前对属性进行判断,代码改写如下
import urllib2
req = urllib2.Request('http://blog.csdn.net/cqcre')
try:
urllib2.urlopen(req)
except urllib2.URLError, e:
if hasattr(e,"code"):
print e.code
if hasattr(e,"reason"):
print e.reason
else:
print "OK"
首先对异常的属性进行判断,以免出现属性输出报错的现象。
以上,就是对URLError和HTTPError的相关介绍,以及相应的错误处理办法,小伙伴们加油!
六、Cookie的使用
大家好哈,上一节我们研究了一下爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用。
为什么要使用Cookie呢?
Cookie,指某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密)
比如说有些网站需要登录后才能访问某个页面,在登录之前,你想抓取某个页面内容是不允许的。那么我们可以利用Urllib2库保存我们登录的Cookie,然后再抓取其他页面就达到目的了。
在此之前呢,我们必须先介绍一个opener的概念。
1.Opener
当你获取一个URL你使用一个opener(一个urllib2.OpenerDirector的实例)。在前面,我们都是使用的默认的opener,也就是urlopen。它是一个特殊的opener,可以理解成opener的一个特殊实例,传入的参数仅仅是url,data,timeout。
如果我们需要用到Cookie,只用这个opener是不能达到目的的,所以我们需要创建更一般的opener来实现对Cookie的设置。
2.Cookielib
cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源。 Cookielib模块非常强大,我们可以利用本模块的CookieJar类的对象来捕获cookie并在后续连接请求时重新发送,比如可以实现模拟登录 功能。该模块主要的对象有CookieJar、FileCookieJar、MozillaCookieJar、LWPCookieJar。
它们的关系:CookieJar —-派生—->FileCookieJar —-派生—–>MozillaCookieJar和LWPCookieJar
1)获取Cookie保存到变量
首先,我们先利用CookieJar对象实现获取cookie的功能,存储到变量中,先来感受一下
import urllib2
import cookielib
#声明一个CookieJar对象实例来保存cookie
cookie = cookielib.CookieJar()
#利用urllib2库的HTTPCookieProcessor对象来创建cookie处理器
handler=urllib2.HTTPCookieProcessor(cookie)
#通过handler来构建opener
opener = urllib2.build_opener(handler)
#此处的open方法同urllib2的urlopen方法,也可以传入request
response = opener.open('http://www.baidu.com')
for item in cookie:
print 'Name = '+item.name
print 'Value = '+item.value
我们使用以上方法将cookie保存到变量中,然后打印出了cookie中的值,运行结果如下
Name = BAIDUID
Value = B07B663B645729F11F659C02AAE65B4C:FG=1
Name = BAIDUPSID
Value = B07B663B645729F11F659C02AAE65B4C
Name = H_PS_PSSID
Value = 12527_11076_1438_10633
Name = BDSVRTM
Value = 0
Name = BD_HOME
Value = 0
2)保存Cookie到文件
在上面的方法中,我们将cookie保存到了cookie这个变量中,如果我们想将cookie保存到文件中该怎么做呢?这时,我们就要用到
FileCookieJar这个对象了,在这里我们使用它的子类MozillaCookieJar来实现Cookie的保存
import cookielib
import urllib2
#设置保存cookie的文件,同级目录下的cookie.txt
filename = 'cookie.txt'
#声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件
cookie = cookielib.MozillaCookieJar(filename)
#利用urllib2库的HTTPCookieProcessor对象来创建cookie处理器
handler = urllib2.HTTPCookieProcessor(cookie)
#通过handler来构建opener
opener = urllib2.build_opener(handler)
#创建一个请求,原理同urllib2的urlopen
response = opener.open("http://www.baidu.com")
#保存cookie到文件
cookie.save(ignore_discard=True, ignore_expires=True)
关于最后save方法的两个参数在此说明一下:
官方解释如下:
- ignore_discard: save even cookies set to be discarded.
- ignore_expires: save even cookies that have expiredThe file is
overwritten if it already exists
由此可见,ignore_discard的意思是即使cookies将被丢弃也将它保存下来,ignore_expires的意思是如果在该文件中 cookies已经存在,则覆盖原文件写入,在这里,我们将这两个全部设置为True。运行之后,cookies将被保存到cookie.txt文件中
3)从文件中获取Cookie并访问
那么我们已经做到把Cookie保存到文件中了,如果以后想使用,可以利用下面的方法来读取cookie并访问网站,感受一下
import cookielib
import urllib2
#创建MozillaCookieJar实例对象
cookie = cookielib.MozillaCookieJar()
#从文件中读取cookie内容到变量
cookie.load('cookie.txt', ignore_discard=True, ignore_expires=True)
#创建请求的request
req = urllib2.Request("http://www.baidu.com")
#利用urllib2的build_opener方法创建一个opener
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
response = opener.open(req)
print response.read()
设想,如果我们的 cookie.txt 文件中保存的是某个人登录百度的cookie,那么我们提取出这个cookie文件内容,就可以用以上方法模拟这个人的账号登录百度。
4)利用cookie模拟网站登录
下面我们以我们学校的教育系统为例,利用cookie实现模拟登录,并将cookie信息保存到文本文件中,来感受一下cookie大法吧!
注意:密码我改了啊,别偷偷登录本宫的选课系统 o(╯□╰)o
import urllib
import urllib2
import cookielib
filename = 'cookie.txt'
#声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件
cookie = cookielib.MozillaCookieJar(filename)
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
postdata = urllib.urlencode({
'stuid':'201200131012',
'pwd':'23342321'
})
#登录教务系统的URL
loginUrl = 'http://jwxt.sdu.edu.cn:7890/pls/wwwbks/bks_login2.login'
#模拟登录,并把cookie保存到变量
result = opener.open(loginUrl,postdata)
#保存cookie到cookie.txt中
cookie.save(ignore_discard=True, ignore_expires=True)
#利用cookie请求访问另一个网址,此网址是成绩查询网址
gradeUrl = 'http://jwxt.sdu.edu.cn:7890/pls/wwwbks/bkscjcx.curscopre'
#请求访问成绩查询网址
result = opener.open(gradeUrl)
print result.read()
以上程序的原理如下
创建一个带有cookie的opener,在访问登录的URL时,将登录后的cookie保存下来,然后利用这个cookie来访问其他网址。
如登录之后才能查看的成绩查询呀,本学期课表呀等等网址,模拟登录就这么实现啦,是不是很酷炫?
好,小伙伴们要加油哦!我们现在可以顺利获取网站信息了,接下来就是把网站里面有效内容提取出来,下一节我们去会会正则表达式!
七、正则表达式
在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式!
1.了解正则表达式
正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。
正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌了。
正则表达式的大致匹配过程是:
1.依次拿出表达式和文本中的字符比较,
2.如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。
3.如果表达式中有量词或边界,这个过程会稍微有一些不同。
2.正则表达式的语法规则
(自己补充)
3.正则表达式相关注解
(1)数量词的贪婪模式与非贪婪模式
正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字 符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式”ab*”如果用于查找”abbbc”,将找到”abbb”。而如果使用非贪婪的数量 词”ab*?”,将找到”a”。
注:我们一般使用非贪婪模式来提取。
(2)反斜杠问题
与大多数编程语言相 同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反 斜杠”\\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。
Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r”\”表示。同样,匹配一个数字的”\d”可以写成r”\d”。有了原生字符串,妈妈也不用担心是不是漏写了反斜杠,写出来的表达式也更直观勒。
4.Python Re模块
Python 自带了re模块,它提供了对正则表达式的支持。主要用到的方法列举如下
#返回pattern对象
re.compile(string[,flag])
#以下为匹配所用函数
re.match(pattern, string[, flags])
re.search(pattern, string[, flags])
re.split(pattern, string[, maxsplit])
re.findall(pattern, string[, flags])
re.finditer(pattern, string[, flags])
re.sub(pattern, repl, string[, count])
re.subn(pattern, repl, string[, count])
在介绍这几个方法之前,我们先来介绍一下pattern的概念,pattern可以理解为一个匹配模式,那么我们怎么获得这个匹配模式呢?很简单,我们需要利用re.compile方法就可以。例如
pattern = re.compile(r'hello')
在参数中我们传入了原生字符串对象,通过compile方法编译生成一个pattern对象,然后我们利用这个对象来进行进一步的匹配。
另外大家可能注意到了另一个参数 flags,在这里解释一下这个参数的含义:
参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。
可选值有:
• re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
• re.M(全拼:MULTILINE): 多行模式,改变’^’和’$’的行为(参见上图)
• re.S(全拼:DOTALL): 点任意匹配模式,改变’.’的行为
• re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
• re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
• re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。
在刚才所说的另外几个方法例如 re.match 里我们就需要用到这个pattern了,下面我们一一介绍。
注:以下七个方法中的flags同样是代表匹配模式的意思,如果在pattern生成时已经指明了flags,那么在下面的方法中就不需要传入这个参数了。
(1)re.match(pattern, string[, flags])
这个方法将会从string(我们要匹配的字符串)的开头开始,尝试匹配pattern,一直向后匹配,如果遇到无法匹配的字符,立即返回 None,如果匹配未结束已经到达string的末尾,也会返回None。两个结果均表示匹配失败,否则匹配pattern成功,同时匹配终止,不再对 string向后匹配。下面我们通过一个例子理解一下
__author__ = 'CQC'
# -*- coding: utf-8 -*-
#导入re模块
import re
# 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串”
pattern = re.compile(r'hello')
# 使用re.match匹配文本,获得匹配结果,无法匹配时将返回None
result1 = re.match(pattern,'hello')
result2 = re.match(pattern,'helloo CQC!')
result3 = re.match(pattern,'helo CQC!')
result4 = re.match(pattern,'hello CQC!')
#如果1匹配成功
if result1:
# 使用Match获得分组信息
print result1.group()
else:
print '1匹配失败!'
#如果2匹配成功
if result2:
# 使用Match获得分组信息
print result2.group()
else:
print '2匹配失败!'
#如果3匹配成功
if result3:
# 使用Match获得分组信息
print result3.group()
else:
print '3匹配失败!'
#如果4匹配成功
if result4:
# 使用Match获得分组信息
print result4.group()
else:
print '4匹配失败!'
运行结果
hello
hello
3匹配失败!
hello
匹配分析
1.第一个匹配,pattern正则表达式为’hello’,我们匹配的目标字符串string也为hello,从头至尾完全匹配,匹配成功。
2.第二个匹配,string为helloo CQC,从string头开始匹配pattern完全可以匹配,pattern匹配结束,同时匹配终止,后面的o CQC不再匹配,返回匹配成功的信息。
3.第三个匹配,string为helo CQC,从string头开始匹配pattern,发现到 ‘o’ 时无法完成匹配,匹配终止,返回None
4.第四个匹配,同第二个匹配原理,即使遇到了空格符也不会受影响。
我们还看到最后打印出了result.group(),这个是什么意思呢?下面我们说一下关于match对象的的属性和方法
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
- 1.string: 匹配时使用的文本。
- 2.re: 匹配时使用的Pattern对象。
- 3.pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- 4.endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- 5.lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
- 6.lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
- 1.group([group1, …]): 获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
- 2.groups([default]): 以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
- 3.groupdict([default]): 返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
- 4.start([group]): 返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
- 5.end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
- 6.span([group]): 返回(start(group), end(group))。
- 7.expand(template): 将匹配到的分组代入template中然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符’0’,只能使用\g0。
下面我们用一个例子来体会一下
# -*- coding: utf-8 -*-
#一个简单的match实例
import re
# 匹配如下内容:单词+空格+单词+任意字符
m = re.match(r'(\w+) (\w+)(?P.*)', 'hello world!')
print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group():", m.group()
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\g \g\g'):", m.expand(r'\2 \1\3')
### output ###
# m.string: hello world!
# m.re:
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!
(2)re.search(pattern, string[, flags])
search方法与match方法极其类似,区别在于match()函数只检测re是不是在string的开始位置匹配,search()会扫描整个string查找匹配,match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回None。同样,search方法的返回对象同样match()返回对象的方法和属性。我们用一个例子感受一下
#导入re模块
import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'world')
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = re.search(pattern,'hello world!')
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# world
(3)re.split(pattern, string[, maxsplit])
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。我们通过下面的例子感受一下。
import re
pattern = re.compile(r'\d+')
print re.split(pattern,'one1two2three3four4')
### 输出 ###
# ['one', 'two', 'three', 'four', '']
(4)re.findall(pattern, string[, flags])
搜索string,以列表形式返回全部能匹配的子串。我们通过这个例子来感受一下
import re
pattern = re.compile(r'\d+')
print re.findall(pattern,'one1two2three3four4')
### 输出 ###
# ['1', '2', '3', '4']
(5)re.finditer(pattern, string[, flags])
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。我们通过下面的例子来感受一下
import re
pattern = re.compile(r'\d+')
for m in re.finditer(pattern,'one1two2three3four4'):
print m.group(),
### 输出 ###
# 1 2 3 4
(6)re.sub(pattern, repl, string[, count])
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
import re
pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print re.sub(pattern,r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print re.sub(pattern,func, s)
### output ###
# say i, world hello!
# I Say, Hello World!
(7)re.subn(pattern, repl, string[, count])
返回 (sub(repl, string[, count]), 替换次数)。
import re
pattern = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print re.subn(pattern,r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print re.subn(pattern,func, s)
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2)
5.Python Re模块的另一种使用方式
在上面我们介绍了7个工具方法,例如match,search等等,不过调用方式都是 re.match,re.search的方式,其实还有另外一种调用方式,可以通过pattern.match,pattern.search调用,这样 调用便不用将pattern作为第一个参数传入了,大家想怎样调用皆可。
函数API列表
match(string[, pos[, endpos]]) | re.match(pattern, string[, flags])
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags])
split(string[, maxsplit]) | re.split(pattern, string[, maxsplit])
findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags])
finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags])
sub(repl, string[, count]) | re.sub(pattern, repl, string[, count])
subn(repl, string[, count]) |re.sub(pattern, repl, string[, count])
具体的调用方法不必详说了,原理都类似,只是参数的变化不同。小伙伴们尝试一下吧~
小伙伴们加油,即使这一节看得云里雾里的也没关系,接下来我们会通过一些实战例子来帮助大家熟练掌握正则表达式的。
收藏个python学习网址:
http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html
八、Beautiful Soup的用法
上一节我们介绍了正则表达式,它的内容其实还是蛮多的,如果一个正则匹配稍有差池,那可能程序就处在永久的循环之中,而且有的小伙伴们也对写正则表 达式的写法用得不熟练,没关系,我们还有一个更强大的工具,叫Beautiful Soup,有了它我们可以很方便地提取出HTML或XML标签中的内容,实在是方便,这一节就让我们一起来感受一下Beautiful Soup的强大吧。
- Beautiful Soup的简介
简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据。官方解释如下:
Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序。
Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码。你不需要考虑编码方式,除非文档没有指定一个编码方式,这时,Beautiful Soup就不能自动识别编码方式了。然后,你仅仅需要说明一下原始编码方式就可以了。
Beautiful Soup已成为和lxml、html6lib一样出色的python解释器,为用户灵活地提供不同的解析策略或强劲的速度。
废话不多说,我们来试一下吧~
- Beautiful Soup 安装
Beautiful Soup 3 目前已经停止开发,推荐在现在的项目中使用Beautiful Soup 4,不过它已经被移植到BS4了,也就是说导入时我们需要 import bs4 。所以这里我们用的版本是 Beautiful Soup 4.3.2 (简称BS4),另外据说 BS4 对 Python3 的支持不够好,不过我用的是 Python2.7.7,如果有小伙伴用的是 Python3 版本,可以考虑下载 BS3 版本。
如果你用的是新版的Debain或Ubuntu,那么可以通过系统的软件包管理来安装,不过它不是最新版本,目前是4.2.1版本
sudo apt-get install Python-bs4
如果想安装最新的版本,请直接下载安装包来手动安装,也是十分方便的方法。在这里我安装的是 Beautiful Soup 4.3.2
Beautiful Soup 3.2.1
Beautiful Soup 4.3.2
下载完成之后解压
运行下面的命令即可完成安装
sudo python setup.py install
安装成功后,需要安装 lxml
sudo apt-get install Python-lxml
Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,如果我们不安装它,则 Python 会使用 Python默认的解析器,lxml 解析器更加强大,速度更快,推荐安装。
- 开启Beautiful Soup 之旅
在这里先分享官方文档链接,不过内容是有些多,也不够条理,在此本文章做一下整理方便大家参考。
Beautiful Soup 4.2.0 文档
4. 创建 Beautiful Soup 对象
首先必须要导入 bs4 库
from bs4 import BeautifulSoup
我们创建一个字符串,后面的例子我们便会用它来演示
html = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1"><!-- Elsie --></a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
创建 beautifulsoup 对象
soup = BeautifulSoup(html)
另外,我们还可以用本地 HTML 文件来创建对象,例如
soup = BeautifulSoup(open('index.html'))
上面这句代码便是将本地 index.html 文件打开,用它来创建 soup 对象
下面我们来打印一下 soup 对象的内容,格式化输出
print soup.prettify()
<html>
<head>
<title>
The Dormouse's story
</title>
</head>
<body>
<p class="title" name="dromouse">
<b>
The Dormouse's story
</b>
</p>
<p class="story">
Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1">
<!-- Elsie -->
</a>
,
<a class="sister" href="http://example.com/lacie" id="link2">
Lacie
</a>
and
<a class="sister" href="http://example.com/tillie" id="link3">
Tillie
</a>
;
and they lived at the bottom of a well.
</p>
<p class="story">
...
</p>
</body>
</html>
以上便是输出结果,格式化打印出了它的内容,这个函数经常用到,小伙伴们要记好咯。
- 四大对象种类
Beautiful Soup将复杂HTML文档转换成一个复杂的树形结构,每个节点都是Python对象,所有对象可以归纳为4种:
- Tag
- NavigableString
- BeautifulSoup
- Comment
下面我们进行一一介绍
(1)Tag
Tag 是什么?通俗点讲就是 HTML 中的一个个标签,例如
<title>The Dormouse's story</title>
<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>
上面的 title a 等等 HTML 标签加上里面包括的内容就是 Tag,下面我们来感受一下怎样用 Beautiful Soup 来方便地获取 Tags下面每一段代码中注释部分即为运行结果
print soup.title
#<title>The Dormouse's story</title>
print soup.head
#<head><title>The Dormouse's story</title></head>
print soup.a
#<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>
print soup.p
#<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
我们可以利用 soup加标签名轻松地获取这些标签的内容,是不是感觉比正则表达式方便多了?不过有一点是,它查找的是在所有内容中的第一个符合要求的标签,如果要查询所有的标签,我们在后面进行介绍。我们可以验证一下这些对象的类型
print type(soup.a)
#<class 'bs4.element.Tag'>
对于 Tag,它有两个重要的属性,是 name 和 attrs,下面我们分别来感受一下
name
print soup.name
print soup.head.name
#[document]
#head
soup 对象本身比较特殊,它的 name 即为 [document],对于其他内部标签,输出的值便为标签本身的名称。
attrs
print soup.p.attrs
#{'class': ['title'], 'name': 'dromouse'}
在这里,我们把 p 标签的所有属性打印输出了出来,得到的类型是一个字典。
如果我们想要单独获取某个属性,可以这样,例如我们获取它的 class 叫什么
print soup.p['class']
#['title']
还可以这样,利用get方法,传入属性的名称,二者是等价的
print soup.p.get('class')
#['title']
我们可以对这些属性和内容等等进行修改,例如
soup.p['class']="newClass"
print soup.p
#<p class="newClass" name="dromouse"><b>The Dormouse's story</b></p>
还可以对这个属性进行删除,例如
del soup.p['class']
print soup.p
#<p name="dromouse"><b>The Dormouse's story</b></p>
不过,对于修改删除的操作,不是我们的主要用途,在此不做详细介绍了,如果有需要,请查看前面提供的官方文档
(2)NavigableString
既然我们已经得到了标签的内容,那么问题来了,我们要想获取标签内部的文字怎么办呢?很简单,用 .string 即可,例如
print soup.p.string
#The Dormouse's story
这样我们就轻松获取到了标签里面的内容,想想如果用正则表达式要多麻烦。它的类型是一个 NavigableString,翻译过来叫 可以遍历的字符串,不过我们最好还是称它英文名字吧。
print type(soup.p.string)
#<class 'bs4.element.NavigableString'>
来检查一下它的类型
print type(soup.p.string)
#<class 'bs4.element.NavigableString'>
(3)BeautifulSoup
BeautifulSoup 对象表示的是一个文档的全部内容.大部分时候,可以把它当作 Tag 对象,是一个特殊的 Tag,我们可以分别获取它的类型,名称,以及属性来感受一下
print type(soup.name)
#<type 'unicode'>
print soup.name
# [document]
print soup.attrs
#{} 空字典
(4)Comment
Comment 对象是一个特殊类型的 NavigableString 对象,其实输出的内容仍然不包括注释符号,但是如果不好好处理它,可能会对我们的文本处理造成意想不到的麻烦。
我们找一个带注释的标签
print soup.a
print soup.a.string
print type(soup.a.string)
运行结果如下
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>
Elsie
<class 'bs4.element.Comment'>
a 标签里的内容实际上是注释,但是如果我们利用 .string 来输出它的内容,我们发现它已经把注释符号去掉了,所以这可能会给我们带来不必要的麻烦。
另外我们打印输出下它的类型,发现它是一个 Comment 类型,所以,我们在使用前最好做一下判断,判断代码如下
if type(soup.a.string)==bs4.element.Comment:
print soup.a.string
上面的代码中,我们首先判断了它的类型,是否为 Comment 类型,然后再进行其他操作,如打印输出。
- 遍历文档树
(1)直接子节点
- 要点:.contents .children 属性
.contents
tag 的 .content 属性可以将tag的子节点以列表的方式输出
print soup.head.contents
#[<title>The Dormouse's story</title>]
输出方式为列表,我们可以用列表索引来获取它的某一个元素
print soup.head.contents[0]
#<title>The Dormouse's story</title>
.children
它返回的不是一个 list,不过我们可以通过遍历获取所有子节点。
我们打印输出 .children 看一下,可以发现它是一个 list 生成器对象
print soup.head.children
#<listiterator object at 0x7f71457f5710>
我们怎样获得里面的内容呢?很简单,遍历一下就好了,代码及结果如下
for child in soup.body.children:
print child
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
(2)所有子孙节点
- 知识点:.descendants 属性
.descendants
.contents 和 .children 属性仅包含tag的直接子节点,.descendants 属性可以对所有tag的子孙节点进行递归循环,和 children类似,我们也需要遍历获取其中的内容。
for child in soup.descendants:
print child
运行结果如下,可以发现,所有的节点都被打印出来了,先生最外层的 HTML标签,其次从 head 标签一个个剥离,以此类推。
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
</body></html>
<head><title>The Dormouse's story</title></head>
<title>The Dormouse's story</title>
The Dormouse's story
<body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
</body>
<p class="title" name="dromouse"><b>The Dormouse's story</b></p>
<b>The Dormouse's story</b>
The Dormouse's story
<p class="story">Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
Once upon a time there were three little sisters; and their names were
<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>
Elsie
,
<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>
Lacie
and
<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
Tillie
;
and they lived at the bottom of a well.
<p class="story">...</p>
...
(3)节点内容
- 知识点:.string 属性
如果tag只有一个 NavigableString 类型子节点,那么这个tag可以使用 .string 得到子节点。如果一个tag仅有一个子节点,那么这个tag也可以使用 .string 方法,输出结果与当前唯一子节点的 .string 结果相同。
通俗点说就是:如果一个标签里面没有标签了,那么 .string 就会返回标签里面的内容。如果标签里面只有唯一的一个标签了,那么 .string 也会返回最里面的内容。例如
print soup.head.string
#The Dormouse's story
print soup.title.string
#The Dormouse's story
如果tag包含了多个子节点,tag就无法确定,string 方法应该调用哪个子节点的内容, .string 的输出结果是 None
print soup.html.string
# None
(4)多个内容
- 知识点: .strings .stripped_strings 属性
.strings
获取多个内容,不过需要遍历获取,比如下面的例子
for string in soup.strings:
print(repr(string))
# u"The Dormouse's story"
# u'\n\n'
# u"The Dormouse's story"
# u'\n\n'
# u'Once upon a time there were three little sisters; and their names were\n'
# u'Elsie'
# u',\n'
# u'Lacie'
# u' and\n'
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'\n\n'
# u'...'
# u'\n'
.stripped_strings
输出的字符串中可能包含了很多空格或空行,使用 .stripped_strings 可以去除多余空白内容
for string in soup.stripped_strings:
print(repr(string))
# u"The Dormouse's story"
# u"The Dormouse's story"
# u'Once upon a time there were three little sisters; and their names were'
# u'Elsie'
# u','
# u'Lacie'
# u'and'
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'...'
(5)父节点
- 知识点: .parent 属性
p = soup.p
print p.parent.name
#body
content = soup.head.title.string
print content.parent.name
#title
(6)全部父节点
- 知识点:.parents 属性
通过元素的 .parents 属性可以递归得到元素的所有父辈节点,例如
content = soup.head.title.string
for parent in content.parents:
print parent.name
title
head
html
[document]
(7)兄弟节点
- 知识点:.next_sibling .previous_sibling 属性
兄弟节点可以理解为和本节点处在统一级的节点,.next_sibling 属性获取了该节点的下一个兄弟节点,.previous_sibling 则与之相反,如果节点不存在,则返回 None
注意:实际文档中的tag的 .next_sibling 和 .previous_sibling 属性通常是字符串或空白,因为空白或者换行也可以被视作一个节点,所以得到的结果可能是空白或者换行
print soup.p.next_sibling
# 实际该处为空白
print soup.p.prev_sibling
#None 没有前一个兄弟节点,返回 None
print soup.p.next_sibling.next_sibling
#<p class="story">Once upon a time there were three little sisters; and their names were
#<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>,
#<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a> and
#<a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>;
#and they lived at the bottom of a well.</p>
#下一个节点的下一个兄弟节点是我们可以看到的节点
(8)全部兄弟节点
- 知识点:.next_siblings .previous_siblings 属性
通过 .next_siblings 和 .previous_siblings 属性可以对当前节点的兄弟节点迭代输出
for sibling in soup.a.next_siblings:
print(repr(sibling))
# u',\n'
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>
# u' and\n'
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>
# u'; and they lived at the bottom of a well.'
# None
(9)前后节点
- 知识点:.next_element .previous_element 属性
与 .next_sibling .previous_sibling 不同,它并不是针对于兄弟节点,而是在所有节点,不分层次
比如 head 节点为
<head><title>The Dormouse's story</title></head>
那么它的下一个节点便是 title,它是不分层次关系的
print soup.head.next_element
#<title>The Dormouse's story</title>
(10)所有前后节点
- 知识点:.next_elements .previous_elements 属性
通过 .next_elements 和 .previous_elements 的迭代器就可以向前或向后访问文档的解析内容,就好像文档正在被解析一样
for element in last_a_tag.next_elements:
print(repr(element))
# u'Tillie'
# u';\nand they lived at the bottom of a well.'
# u'\n\n'
# <p class="story">...</p>
# u'...'
# u'\n'
# None
7.搜索文档树
(1)find_all( name , attrs , recursive , text , **kwargs )
find_all() 方法搜索当前tag的所有tag子节点,并判断是否符合过滤器的条件
1)name 参数
name 参数可以查找所有名字为 name 的tag,字符串对象会被自动忽略掉
A.传字符串
最简单的过滤器是字符串.在搜索方法中传入一个字符串参数,Beautiful Soup会查找与字符串完整匹配的内容,下面的例子用于查找文档中所有的标签
soup.find_all('b')
# [<b>The Dormouse's story</b>]
print soup.find_all('a')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie
B.传正则表达式
如果传入正则表达式作为参数,Beautiful Soup会通过正则表达式的 match() 来匹配内容.下面例子中找出所有以b开头的标签,这表示和标签都应该被找到
import re
for tag in soup.find_all(re.compile("^b")):
print(tag.name)
# body
# b
C.传列表
如果传入列表参数,Beautiful Soup会将与列表中任一元素匹配的内容返回.下面代码找到文档中所有标签和标签
soup.find_all(["a", "b"])
# [<b>The Dormouse's story</b>,
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
D.传 True
True 可以匹配任何值,下面代码查找到所有的tag,但是不会返回字符串节点
for tag in soup.find_all(True):
print(tag.name)
# html
# head
# title
# body
# p
# b
# p
# a
# a
E.传方法
如果没有合适过滤器,那么还可以定义一个方法,方法只接受一个元素参数 [4] ,如果这个方法返回 True 表示当前元素匹配并且被找到,如果不是则反回 False
下面方法校验了当前元素,如果包含 class 属性却不包含 id 属性,那么将返回 True:
def has_class_but_no_id(tag):
return tag.has_attr('class') and not tag.has_attr('id')
将这个方法作为参数传入 find_all() 方法,将得到所有
标签:
soup.find_all(has_class_but_no_id)
# [<p class="title"><b>The Dormouse's story</b></p>,
# <p class="story">Once upon a time there were...</p>,
# <p class="story">...</p>]
2)keyword 参数
- 注意:如果一个指定名字的参数不是搜索内置的参数名,搜索时会把该参数当作指定名字tag的属性来搜索,如果包含一个名字为 id
的参数,Beautiful Soup会搜索每个tag的”id”属性
soup.find_all(id='link2')
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
如果传入 href 参数,Beautiful Soup会搜索每个tag的”href”属性
soup.find_all(href=re.compile("elsie"))
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
使用多个指定名字的参数可以同时过滤tag的多个属性
soup.find_all(href=re.compile("elsie"), id='link1')
# [<a class="sister" href="http://example.com/elsie" id="link1">three</a>]
在这里我们想用 class 过滤,不过 class 是 python 的关键词,这怎么办?加个下划线就可以
soup.find_all("a", class_="sister")
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
有些tag属性在搜索不能使用,比如HTML5中的 data-* 属性
data_soup.find_all(attrs={"data-foo": "value"})
# [<div data-foo="value">foo!</div>]
3)text 参数
通过 text 参数可以搜搜文档中的字符串内容.与 name 参数的可选值一样, text 参数接受 字符串 , 正则表达式 , 列表, True
soup.find_all(text="Elsie")
# [u'Elsie']
soup.find_all(text=["Tillie", "Elsie", "Lacie"])
# [u'Elsie', u'Lacie', u'Tillie']
soup.find_all(text=re.compile("Dormouse"))
[u"The Dormouse's story", u"The Dormouse's story"]
4)limit 参数
find_all() 方法返回全部的搜索结构,如果文档树很大那么搜索会很慢.如果我们不需要全部结果,可以使用 limit 参数限制返回结果的数量.效果与SQL中的limit关键字类似,当搜索到的结果数量达到 limit 的限制时,就停止搜索返回结果.
文档树中有3个tag符合搜索条件,但结果只返回了2个,因为我们限制了返回数量
soup.find_all("a", limit=2)
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
5)recursive 参数
调用tag的 find_all() 方法时,Beautiful Soup会检索当前tag的所有子孙节点,如果只想搜索tag的直接子节点,可以使用参数 recursive=False .
一段简单的文档:
<html>
<head>
<title>
The Dormouse's story
</title>
</head>
...
是否使用 recursive 参数的搜索结果:
soup.html.find_all("title")
# [<title>The Dormouse's story</title>]
soup.html.find_all("title", recursive=False)
# []
(2)find( name , attrs , recursive , text , **kwargs )
它与 find_all() 方法唯一的区别是 find_all() 方法的返回结果是值包含一个元素的列表,而 find() 方法直接返回结果
(3)find_parents() find_parent()
find_all() 和 find() 只搜索当前节点的所有子节点,孙子节点等. find_parents() 和 find_parent() 用来搜索当前节点的父辈节点,搜索方法与普通tag的搜索方法相同,搜索文档搜索文档包含的内容
(4)find_next_siblings() find_next_sibling()
这2个方法通过 .next_siblings 属性对当 tag 的所有后面解析的兄弟 tag 节点进行迭代, find_next_siblings() 方法返回所有符合条件的后面的兄弟节点,find_next_sibling() 只返回符合条件的后面的第一个tag节点
(5)find_previous_siblings() find_previous_sibling()
这2个方法通过 .previous_siblings 属性对当前 tag 的前面解析的兄弟 tag 节点进行迭代, find_previous_siblings() 方法返回所有符合条件的前面的兄弟节点, find_previous_sibling() 方法返回第一个符合条件的前面的兄弟节点
(6)find_all_next() find_next()
这2个方法通过 .next_elements 属性对当前 tag 的之后的 tag 和字符串进行迭代, find_all_next() 方法返回所有符合条件的节点, find_next() 方法返回第一个符合条件的节点
(7)find_all_previous() 和 find_previous()
这2个方法通过 .previous_elements 属性对当前节点前面的 tag 和字符串进行迭代, find_all_previous() 方法返回所有符合条件的节点, find_previous()方法返回第一个符合条件的节点
注:以上(2)(3)(4)(5)(6)(7)方法参数用法与 find_all() 完全相同,原理均类似,在此不再赘述。
8.CSS选择器
我们在写 CSS 时,标签名不加任何修饰,类名前加点,id名前加 #,在这里我们也可以利用类似的方法来筛选元素,用到的方法是 soup.select(),返回类型是 list
(1)通过标签名查找
print soup.select('title')
#[<title>The Dormouse's story</title>]
print soup.select('a')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>, <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
print soup.select('b')
#[<b>The Dormouse's story</b>]
(2)通过类名查找
print soup.select('.sister')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>, <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>, <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
(3)通过 id 名查找
print soup.select('#link1')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>]
(4)组合查找
组合查找即和写 class 文件时,标签名与类名、id名进行的组合原理是一样的,例如查找 p 标签中,id 等于 link1的内容,二者需要用空格分开
print soup.select('p #link1')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>]
直接子标签查找
print soup.select("head > title")
#[<title>The Dormouse's story</title>]
(5)属性查找
查找时还可以加入属性元素,属性需要用中括号括起来,注意属性和标签属于同一节点,所以中间不能加空格,否则会无法匹配到。
print soup.select("head > title")
#[<title>The Dormouse's story</title>]
print soup.select('a[href="http://example.com/elsie"]')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>]
同样,属性仍然可以与上述查找方式组合,不在同一节点的空格隔开,同一节点的不加空格
print soup.select('p a[href="http://example.com/elsie"]')
#[<a class="sister" href="http://example.com/elsie" id="link1"><!-- Elsie --></a>]
好,这就是另一种与 find_all 方法有异曲同工之妙的查找方法,是不是感觉很方便?
总结
本篇内容比较多,把 Beautiful Soup 的方法进行了大部分整理和总结,不过这还不算完全,仍然有 Beautiful Soup 的修改删除功能,不过这些功能用得比较少,只整理了查找提取的方法,希望对大家有帮助!小伙伴们加油!
熟练掌握了 Beautiful Soup,一定会给你带来太多方便,加油吧!