数据挖掘期末作业(老师版本)

本文档详细介绍了数据挖掘作业的实现过程,包括滑动平均函数ma(data, delay)、卡方值计算函数calCS(data)、特征归一化函数normalization(data, minV, maxV)的实现,并探讨了SMC、Jaccard系数、范式距离、Jaccard距离、余弦相似度、海明距离、一元线性回归以及K-means聚类等关键概念和算法的应用。" 80379719,6621887,Faster RCNN数据处理:AnchorLoader详解,"['深度学习', '计算机视觉', '目标检测', 'Faster RCNN', '数据预处理']

实现滑动平均ma(data, delay)函数,结果保留整数存在序列中并返回。主程序总调用ma函数进行验证。

def ma(data, delay):
    res = []
    for i in range(len(data) - delay + 1):
        val = 0
        for j in range(delay):
            val += data[i + j]
        val /= delay
        val = round(val)
        res.append(val)
    return res 
a = [1437, 1532, 1503, 1498, 1524, 1552, 1542, 1632]
print(ma(a,3))
print(ma(a,5))

实现卡方值计算函数calCS(data),主程序中调用calCS函数进行验证。

def calCS(data):
    rows = len(data)
    cols = len(data[0])
    rS = []
    for i in data:
        rS.append(sum(i))
    cS = []
    for i in range(cols):
        s = 0
        for j in range(rows):
            s += data[j][i]
        cS.append(s)
    n = sum(cS)
    res = 0
    for i in range(rows):
        for j in range(cols):
            eij = rS[i]*cS[j]/n
            res += (data[i][j]-eij)**2/eij
    return res

data = [[40, 11], [24,19]]
calCS(data)

实现特征归一化函数normalization(data, minV, maxV),主程序中调用calCS函数进行验证。

def normalization(data, minV, maxV):
    minV0 = min(data)
    maxV0 = max(data)
    res = []
    for e0 in data:
        e = (e0 - minV0)/(maxV0-minV0)*(maxV-minV) + minV
        res.append(e)
    return res

v0 = [1,2,3,4,5,4,3,2,1]
normalization(v0, -1, 1)

计算SMC系数和Jaccard系数

def calSMC(x, y):
    cnt1 = 0
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值