张博208
码龄14年
  • 2,044,235
    被访问
  • 173
    原创
  • 179,072
    排名
  • 716
    粉丝
  • 9
    铁粉
关注
提问 私信

个人简介:知识搬运工

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2008-02-18
博客简介:

bbbeoy的专栏

查看详细资料
  • 5
    领奖
    总分 1,857 当月 3
个人成就
  • 获得710次点赞
  • 内容获得190次评论
  • 获得3,270次收藏
创作历程
  • 3篇
    2022年
  • 48篇
    2021年
  • 268篇
    2020年
  • 82篇
    2019年
  • 271篇
    2018年
  • 348篇
    2017年
  • 4篇
    2016年
  • 9篇
    2014年
成就勋章
TA的专栏
  • Tabular Learning
    3篇
  • GPU & cuda
    2篇
  • multi-label learning
    1篇
  • MLML
    2篇
  • Multi-Task Learning
    17篇
  • Causal Inference
    4篇
  • Retrieval
    8篇
  • Graph
    23篇
  • Knowledge Distillation
    2篇
  • Domain Adaptation
    3篇
  • Incremental Learning
  • Contrastive Learning
    1篇
  • Self-Supervised Learning
  • Transfer learning
    7篇
  • match and rank
    6篇
  • Pandas
    1篇
  • Train
    11篇
  • Risk
    2篇
  • computational advertising
    1篇
  • online learning
    2篇
  • search engine
    2篇
  • Data Fusion
    1篇
  • meta learning
    7篇
  • Optimize
    4篇
  • Model Compression
    4篇
  • Data Structures And Algorithms
  • Time Series
    3篇
  • Quantization
    2篇
  • pytorch
    12篇
  • Automatic Speech Recognition
    5篇
  • Probabilistic programming language
    1篇
  • Speech recognition
    1篇
  • Attention
    6篇
  • knowledge
    1篇
  • AutoML 
    1篇
  • Spatial
    1篇
  • Transformer
    2篇
  • Explainer
    2篇
  • miscellaneous
    3篇
  • NAS
    1篇
  • Kubernetes
    1篇
  • high performance computer
    8篇
  • R
    19篇
  • SQL
    65篇
  • Python
    153篇
  • C++
    8篇
  • Regex
    5篇
  • Data Analysis
    75篇
  • Machine Learning
    206篇
  • Algorithm
    51篇
  • Programming
    13篇
  • Hive
    51篇
  • Hadoop
    3篇
  • Spark
    27篇
  • Basis
    36篇
  • Spider
    6篇
  • Case
    15篇
  • sklearn
    17篇
  • Deep Learning
    103篇
  • Feature enginnering
    22篇
  • Recommend system
    31篇
  • Nature language Programming
    72篇
  • Factorization Machine
    3篇
  • Tensorflow
    18篇
  • generative model
    7篇
  • Lunix & Shell
    24篇
  • Computer vision
    81篇
  • Reinforcement learning
    40篇
  • Warehouse
    4篇
  • NLTK
    2篇
  • AI
    3篇
  • anomaly detection
    8篇
  • Scala
    25篇
  • complex network
    3篇
  • Semi-Supervised Learning
    8篇
  • Docker
    2篇
  • Keras
    5篇
  • Image Classification
    1篇
  • Object Detection
    37篇
  • Image Retrieval
    2篇
  • Semantic Segmentation
    12篇
  • Similarity Learning
    3篇
  • Image Captioning
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvtensorflowmxnetpytorchscikit-learn聚类集成学习迁移学习分类回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深度学习应用于Tabular数据的经验

深度学习应用于Tabular数据的经验 - 知乎
原创
发布博客 2022.02.16 ·
415 阅读 ·
0 点赞 ·
0 评论

Wide&Deep的进阶---Deep&Cross(DCN)模型理解与分析,附TF2.x复现

Wide&Deep的进阶---Deep&Cross(DCN)模型理解与分析,附TF2.x复现 - 知乎​​​​​​推荐系统 之 Wide&Deep和Deep&Cross_Francis_s的博客-CSDN博客
原创
发布博客 2022.01.07 ·
1545 阅读 ·
0 点赞 ·
0 评论

Conservative Q-Learning for Offline Reinforcement Learning

Conservative Q-Learning for Offline Reinforcement Learning_石磅溪涧的博客-CSDN博客(CQL)Conservative Q-Learning for Offline Reinforcement Learning_yxh的博客-CSDN博客
原创
发布博客 2022.01.07 ·
186 阅读 ·
0 点赞 ·
0 评论

Class-Balanced Loss Based on Effective Number of Samples - 1 - 论文学习

https://arxiv.org/pdf/1901.05555.pdfskewed 倾斜的,歪斜的 heuristic 启发式的 interpolated插值 focal 焦点的 complementary 互补的 coverage 覆盖 tamable 可驯服的 intrinsic 内在的,本质的Abstract随着大规模、真实世界数据集的迅速增加,长尾数据分布问题的解决变得至关重要(即少数类占了大部分数据,而大多数类的代表性不足)。现有的解决方案通常采用类重新平衡策略,例如根据每个类的观察
转载
发布博客 2021.12.17 ·
385 阅读 ·
0 点赞 ·
0 评论

多标签学习综述

多标签学习综述_我的博客-CSDN博客_多标签学习
原创
发布博客 2021.12.14 ·
160 阅读 ·
1 点赞 ·
0 评论

Learning a Deep ConvNet for Multi-label Classification with Partial Labels

来源:CVPR2019下载链接:https://arxiv.org/abs/1902.09720本文目的:为了减少图片中多标签标注的成本,提出了一种训练模型的方式:训练模型的样本使用标签没有标注完整的图片;作者的贡献:1)比较了多标签数据集的标注方法,作者的方法证明了使用部分标注的所有图片效果好于标注了所有标签的小数据集;2)提出了一种scalable方法用于ConvNet去学习部分标签(使用了binary cross-entropy loss);3)提出了一种预测丢失标签的方法,使
转载
发布博客 2021.12.14 ·
142 阅读 ·
0 点赞 ·
0 评论

Learning a Deep ConvNet for Multi-label Classification with Partial Labels 论文笔记

Title: Learning a Deep ConvNet for Multi-label Classification with Partial Labels(2019)Link: Paper文章目录Abstract1. Introduction2. Related WorkLearning with partial / missing labels.Curriculum Learning / Never-Ending Learning.3. Learning with Partial
转载
发布博客 2021.12.14 ·
105 阅读 ·
0 点赞 ·
0 评论

因果表征学习最新综述:连接因果科学和机器学习的桥梁

导语处于信息时代的我们,有幸经历了轰轰烈烈的以数据为中心的大数据革命(涉及机器学习,深度学习及其应用,例如 Alpha-Go, GPT-3, 自动驾驶等),深刻改变了我们生活的方方面面。如今另外一场相对不那么广为人知,但是同样重要的因果革命正在进行,它以因果科学中心并席卷了各个领域,尤其是人工智能。近日,一篇探索让 AI 系统攀登因果之梯的深刻综述文章“Torwards Causal Representation Learning”引起了大家广泛的关注。该文章可以视作 Bernhard Schölkopf
转载
发布博客 2021.12.10 ·
428 阅读 ·
0 点赞 ·
0 评论

向量空间模型算法( Vector Space Model )

NLP --- 文本分类(向量空间模型(Vector Space Model)VSM)_进击的菜鸟-CSDN博客_向量空间模型向量空间模型算法( Vector Space Model )_摸鱼大侠的博客-CSDN博客_向量空间模型
原创
发布博客 2021.12.07 ·
124 阅读 ·
0 点赞 ·
0 评论

How Graph Neural Networks (GNN) work: introduction to graph convolutions from scratch

How Graph Neural Networks (GNN) work: introduction to graph convolutions from scratchNikolas Adaloglouon2021-04-08·12minsGraph Neural NetworksSIMILAR ARTICLESGraph Neural NetworksGraph Neural Networks - An overviewBest Graph Neural Network.
转载
发布博客 2021.12.01 ·
191 阅读 ·
0 点赞 ·
0 评论

AutoDis: 连续型特征embedding新方法

An Embedding Learning Framework for Numerical Features in CTR PredictionKDD2021|AutoDis: 连续型特征embedding新方法! - 知乎总结该文章提出了AutoDis。该方法具有以下三种优点:1.高模型容量。2.自动离散化,端到端训练。3.连续特征embedding具有唯一的表示。感兴趣的同学可以动手实践下,该文章已开源[1]。笔者认为,该文章具有很好的借鉴价值,大家可以在自己的任务上或者业务中进行尝试...
原创
发布博客 2021.11.30 ·
936 阅读 ·
0 点赞 ·
0 评论

ESMM模型与ESM2模型总结

ESMM模型与ESM2模型总结_rotation博客-CSDN博客
转载
发布博客 2021.11.29 ·
88 阅读 ·
0 点赞 ·
0 评论

GBDT能否被深度学习取代——TabNet

论文阅读:GBDT能否被深度学习取代——TabNet - 简书2021年,谁才是表格类数据模型的王者? - 知乎 (zhihu.com)
转载
发布博客 2021.11.24 ·
98 阅读 ·
0 点赞 ·
0 评论

MixMatch 论文解读

机器学习:MixMatch 论文解读_Matrix-11-CSDN博客
转载
发布博客 2021.11.22 ·
76 阅读 ·
0 点赞 ·
0 评论

2021年,谁才是表格类数据模型的王者?

上次在聊 autoML 框架时顺带提了一下对于表格类数据(也是商业类问题的主要数据形式)表现较好的模型的选择,最近正好在 Twitter 上看到几篇不错的文章,就来稍微展开讨论一下。以我目前的认知,表格类数据的主流模型选择就是树模型(包括 GBDT,随机森林等)和 NN(从 MLP 到各种复杂变种)两类。本文也主要来阐述和对比这两类模型。关于 Kaggle 比赛的分析如果仅考虑模型的精度效果,那么 Kaggle 比赛绝对是最好的检验方式之一。这方面推荐砍手豪大佬的两个系列文章:No free l
转载
发布博客 2021.11.17 ·
245 阅读 ·
2 点赞 ·
0 评论

Pseudo-Label

[论文阅读笔记22]Pseudo-Label:简单有效的半监督学习方法_ld326的专栏-CSDN博客
转载
发布博客 2021.11.16 ·
31 阅读 ·
0 点赞 ·
0 评论

知识蒸馏(Knowledge Distillation)

知识蒸馏(Knowledge Distillation)_AI Flash-CSDN博客_知识蒸馏
转载
发布博客 2021.11.09 ·
46 阅读 ·
0 点赞 ·
0 评论

Knowledge Distillation: Principles, Algorithms, Applications

Large-scale machine learning and deep learning models are increasingly common. For instance, GPT-3 is trained on 570 GB of text and consists of 175 billion parameters. However, whilst training large models helps improve state-of-the-art performance, depl..
转载
发布博客 2021.11.09 ·
217 阅读 ·
0 点赞 ·
0 评论

Understanding Domain Adaptation

Note — I assume the reader has some basic knowledge of neural network and its working.Domain adaptation is a field of computer vision, where our goal is to train a neural network on asource datasetand secure a good accuracy on thetarget datasetwhich ...
原创
发布博客 2021.11.09 ·
181 阅读 ·
0 点赞 ·
0 评论

多目标学习在推荐系统的应用(MMOE/ESMM/PLE)

Alternative Training多目标学习在推荐系统的应用(MMOE/ESMM/PLE) - 知乎
转载
发布博客 2021.11.02 ·
177 阅读 ·
0 点赞 ·
0 评论
加载更多