- 博客(56)
- 收藏
- 关注
原创 如何用DL4J对人脸识别模型进行攻击
一、前言 上一篇博客《如何用DL4J构建起一个人脸识别系统》介绍了如何用DL4J构建一个人脸识别服务,在文章的结尾提到了MLAttack,本篇博客就来介绍...
2020-09-17 16:57:00 822
原创 Netty的七七八八
Netty被广泛使用在各种场景,如Dubbo服务的远程通信、Hadoop的shuffle过程、游戏领域的client和server通讯等等。Netty可以非常...
2020-09-11 18:47:00 229
原创 windows10下cuda9.2升级到cuda10.2
一、文章主要内容 1、Windows10下从cuda9.2升级到cuda10.2 2、Windows10下cudnn安装 3、cuda9...
2020-09-09 13:02:00 12461
原创 一篇文章看懂大型网站的架构技巧
一、写在前面 “架构”一词,是一个非常大命题,通常很难用语言来描述这个东西,我们先不谈“架构“这个词,我们先来看一些现象。 1、对于真正做实事的开发者来说,通常会有类似的感觉,架构师通常就画画ppt,代码也写不了,画的各种ppt也就看看,也解不了什么实际问题。 2...
2019-10-13 18:06:00 382
原创 一篇文章看懂自然语言处理——word表示技术的变迁(从bool模型到BERT)
一、背景 自然语言处理就是要让计算机理解人类的语言,至于到目前为止,计算机是否真的理解的人类的语言,这是一个未知之数,我的理解是目前为止并没有懂得人类语言,只是查表给出一个最大概率的回应而已。那么自然语言处理(NLP)包括哪些领域的东西呢?文本分类(如:垃圾邮件分类、情感分析)、机器...
2019-09-25 00:12:00 439
原创 如何利用deeplearning4j中datavec对图像进行处理
一、导读 众所周知图像是有红绿蓝三种颜色堆叠而成,利用deeplearning对图像处理,必须把图像转化为张量,每一张图片由有三维张量组成,三维分别是[depth、height、width],直观来讲,就是用三个矩阵堆叠起来,每一个矩阵代表一个通道,如下图。有时候需要对图片进行旋转、...
2019-09-22 21:25:00 813
原创 通俗话说一说各种Normalization以及用deeplearning4j实现Layer Normalization
一、Normalization是什么 Normalization一句话概括来说就是用一种办法,将一组数据压到均值为0,方差为1的正态分布上去,具体做法是数据集的每一个元素减去均值再除以标准差。公式如下:(请忽略参数g,g的问题很诡异,后面说) 这个公式说的更直白一点就是...
2019-09-20 13:09:00 380
原创 如何用Deeplearning4j实现GAN
一、Gan的思想 Gan的核心所做的事情是在解决一个argminmax的问题,公式: 1、求解一个Discriminator,可以最大尺度的丈量Generator 产生的数据和真实数据之间的分布距离 2、求解一个Generator,可以最大程度减小产生数据和真实数...
2019-08-14 13:10:00 356 1
原创 DL4J之CNN对今日头条文本分类
一、数据集介绍 数据来源:今日头条客户端 数据格式如下: 6551700932705387022_!_101_!_news_culture_!_京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国6552368441838272771...
2019-08-13 23:31:00 729 1
原创 ND4J自动微分
一、前言 ND4J从beta2开始就开始支持自动微分,不过直到beta4版本为止,自动微分还只支持CPU,GPU版本将在后续版本中实现。 本篇博客中,我们将用ND4J来构建一个函数,利用ND4J SameDiff构建函数求函数值和求函数每个变量的偏微分值。 二、构建函数 ...
2019-05-25 11:28:00 306
原创 eclipse撸一发Keras卷积神经网络对手写数字识别
一、导读 1、window10 python环境Anaconda安装 2、keras安装 3、tensorflow安装 4、eclipse python开发插件PyDev安装,配置 5、keras卷积神经网络对手写数字识别 二、环境安装 ...
2019-05-25 10:13:00 649
原创 一篇文章看懂事务的一致性
一、前言 事务一直以来是一个玄之又玄的东西,非常难以理解。难以理解倒不是因为事务本身有多难,而是事务这个概念被各种刻意包装,以至于让人晕头转向,摸不着头脑。例如各种抽象的概念,一致性、持久性、原子性、持久性、读未提交、读已提交、可重复读、序列化,Spring也抽象了事务的传播属性,数...
2019-03-25 19:40:00 1603
原创 剖析Hadoop和Spark的Shuffle过程差异(二)
上一篇博客《剖析Hadoop和Spark的Shuffle过程差异(一)》剖析了Hadoop MapReduce的Shuffle过程,那么本篇博客,来聊一聊Spark shuffle。 Spark shuffle相对来说更简单,因为不要求全局有序,所以没有那么多排序合并的操作。...
2019-03-12 23:22:00 369
原创 Spark RDD操作之Map系算子
本篇博客将介绍Spark RDD的Map系算子的基本用法。 1、map map将RDD的元素一个个传入call方法,经过call方法的计算之后,逐个返回,生成新的RDD,计算之后,记录数不会缩减。示例代码,将每个数字加10之后再打印出来,代码如下 import ...
2019-03-07 20:12:00 1056
原创 分布式定时任务框架Elastic-Job的使用
一、前言 Elastic-Job是一个优秀的分布式作业调度框架。 Elastic-Job是一个分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。 Elastic-Job-Lite定位为轻量级无中心化...
2019-03-06 20:37:00 706
原创 剖析Hadoop和Spark的Shuffle过程差异(一)
一、前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交、并、差、聚合、排序等过程。而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce...
2019-03-05 23:33:00 268
原创 Spark RDD操作之ReduceByKey
一、reduceByKey作用 reduceByKey将RDD中所有K,V对中,K值相同的V进行合并,而这个合并,仅仅根据用户传入的函数来进行,下面是wordcount的例子。 import java.util.Arrays;import java.util.List;...
2019-03-04 19:49:00 1956
原创 解析Sharding-Sphere的SQL执行引擎
一、前言 Sharding-JDBC 是一款优秀的分库分表框架,从3.0开始,Sharding-JDBC更名为Sharding-Sphere,之前用Sharding-JDBC 2时,对于同库分表而言,sql执行是串行的,因为同数据源的connection只会获取一个,并且对于conn...
2018-12-15 19:57:00 1247
原创 对基于深度神经网络的Auto Encoder用于异常检测的一些思考
一、前言 现实中,大部分数据都是无标签的,人和动物多数情况下都是通过无监督学习获取概念,故而无监督学习拥有广阔的业务场景。举几个场景:网络流量是正常流量还是攻击流量、视频中的人的行为是否正常、运维中服务器状态是否异常等等。有监督学习的做法是...
2018-07-23 00:00:00 16717 2
原创 ND4J求多元线性回归以及GPU和CPU计算性能对比
上一篇博客《梯度下降法求多元线性回归及Java实现》简单了介绍了梯度下降法,并用Java实现了一个梯度下降法求回归的例子。本篇博客,尝试用dl4j的张量运算库nd4j来实现梯度下降法求多元线性回归,并比较GPU和CPU计算的性能差异。 一、...
2018-07-17 00:00:00 392
原创 ND4J求多元线性回归以及GPU和CPU计算性能对比
上一篇博客《梯度下降法求多元线性回归及Java实现》简单了介绍了梯度下降法,并用Java实现了一个梯度下降法求回归的例子。本篇博客,尝试用dl4j的张量运算库nd4j来实现梯度下降法求多元线性回归,并比较GPU和CPU计算的性能差异。 一、ND4J简介 ND4J是DL4J提供的张量运算库,提供了多种张量运算的封装,以下内容复杂于ND4J官网: ND4J和ND4S是JVM的...
2018-06-03 19:01:47 1566
原创 梯度下降法求多元线性回归及Java实现
对于数据分析而言,我们总是极力找数学模型来描述数据发生的规律, 有的数据我们在二维空间就可以描述,有的数据则需要映射到更高维的空间。数据表现出来的分布可能是完全离散的,也可能是聚集成堆的,那么机器学习的任务就是让计算机自己在数据中学习到数据的规律。那么这个规律通常是可以用一些函数来描述,函数可能是线性的,也可能是非线性的,怎么找到这些函数,是机器学习的首要问题。 本篇博客尝试用梯度下...
2018-06-02 23:16:52 4463 7
原创 神经网络算法对车牌价格的预测
声明: 本篇博客纯粹是技术的探讨。 一、前言 北京、上海、深圳、杭州等很多城市都对小客车增量进行调控,获取车牌的其中一个办法是竞价,那么是哪些因素决定着车牌的价格呢?是否有算法可以预测车牌的价格呢?本篇博客尝试着做一些探讨。 二、因子选择 ...
2018-03-26 00:00:00 4207
原创 整合DL4J训练模型与Web工程
一、前言 上一篇博客《有趣的卷积神经网络》介绍如何基于deeplearning4j对手写数字识别进行训练,对于整个训练集只训练了一次,正确率是0.9897,随着迭代次数的增加,网络模型将更加逼近训练集,下面是对训练集迭代十次的评估结果,总之迭代次数的增加会...
2018-03-21 00:00:00 2478 4
原创 有趣的卷积神经网络
一、前言 最近一直在研究深度学习,联想起之前所学,感叹数学是一门朴素而神奇的科学。F=G*m1*m2/r²万有引力描述了宇宙星河运转的规律,E=mc²描述了恒星发光的奥秘,V=H*d哈勃定律描述了宇宙膨胀的奥秘,自然界的大部分现象和规律都可以用数学函数来描...
2018-03-19 00:00:00 920 1
原创 一篇文章看懂Java并发和线程安全(二)
一、前言 上一篇博客《一篇文章看懂Java并发和线程安全(一)》讲述了多线程中,程序总不能按照我们所看到的那样执行,必须保证共享数据的可见性和执行临界区代码的有序性,才能让多线程程序运行成我们想要的样子,本篇博客将继续深入讲解一个有序而又乱序的Java世界。...
2018-01-26 00:00:00 282
原创 一篇文章看懂Java并发和线程安全(一)
一、前言 长久以来,一直想剖析一下Java线程安全的本质,但是苦于有些微观的点想不明白,便搁置了下来,前段时间慢慢想明白了,便把所有的点串联起来,趁着思路清晰,整理成这样一篇文章。 二、导读 1、为什么有多线程? 2、线程安全描述的本...
2018-01-20 00:00:00 649 8
原创 一篇文章看懂爬虫
一、导读 1、爬虫基础知识 2、优秀国产开源爬虫框架webmagic剖析 二、爬虫基础 1、爬虫的本质 爬虫的本质:基于Http协议请求目标地址获取响应结果解析并存储。 2、HTTP请求 (1)、请求头(...
2017-12-12 00:00:00 1058 3
原创 如何基于TeaFramework进行web开发
前面几篇博客介绍了TeaFramework的实现,本篇博客将介绍如果利用Teaframework进行web开发,写了一个demo,包括一套完整的增删改查,分页、AOP等等,基于LayUI做了一套界面(感谢@贤心的LayUI)。demo已经上传至码云,地址:h...
2017-12-08 00:00:00 204
原创 TeaFramework——MVC框架的实现
web MVC模式拆解来看,就做了以下几件事: 1、将web页面传过来的零散数据赋值给Model,这里的model就是普通java对象,如pojo、domain、vo等等。 2、控制返回值,返回值可以是普通的视图,例如jsp、freema...
2017-12-05 00:00:00 395
原创 TeaFramework——事务的实现
事务的本质:让程序像我们看到的那样执行。 数据库事务就是对于界定为同一个事务的一组数据库操作,要么同时成功,要么同时失败,不可能出现部分成功的中间状态。 对于JDBC原生事务,首先要设置自动提交为false:connection.setA...
2017-12-04 00:00:00 114
原创 TeaFramework——AOP的实现
AOP是拦截的方法后要做对应的织入,那么先定义几种通知:前置通知、后置通知、异常通知、结束通知,代码如下: public interface AopAdvice { public void before(Proxy proxy); public v...
2017-12-04 00:00:00 149
原创 简单又复杂的人工神经网络
最近正在看吴军博士的一本书《数学之美》,受到了很多启发,恶补了几天线性代数和高等数学,趁着自己思路清晰,把自己对人工神经网络的想法记录下来,顺便推导一下公式。 一场人工智能狂潮正在悄悄的到来,也许要不了多久,各种智能产品将会环绕再我们的周围,坐在智...
2017-11-30 00:00:00 1799
原创 架构的变迁
一、背景 目前正在做的事大部分与数据处理、机器学习、自然语言处理相关,一直想对web进行一些总结,一是想回顾一下这些年web架构的变迁,二是想记录下来方便日后查看。 二、架构的变迁 软件架构有C/S和B/S之分。C/S即client/serve...
2017-11-28 00:00:00 417
原创 关于AOP和代理的一点想法
AOP从本质上讲是在我们可视之外改变了程序的运行轨迹,比方说,有个方法method执行完,就结束了,通过AOP在method前插入N个操作、在method后插入N个操作,那么这时要执行method方法,需要执行前面的N个操作才能进入,要退出,还得把后面的N个...
2017-11-23 00:00:00 212
原创 TeaFramework——IOC容器实现(二)
上一篇讲了生成的Bean这样放在Map容器里已经属性的注入过程,这一篇中将讲到Class怎么被扫描以及怎么被实例化的。 对于web工程而言,要扫描的class有两个来源: 1、项目中写的class,放在classpath路径下 ...
2017-11-22 00:00:00 145
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人