HDU 5934 Bomb(炸弹)

HDU 5934 Bomb(炸弹)

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

 

Problem Description - 题目描述
There are N bombs needing exploding. 
 
Each bomb has three attributes: exploding radius ri, position (xi, yi) and lighting-cost ci which means you need to pay ci cost making it explode. 
 
If a un-lighting bomb is in or on the border the exploding area of another exploding one, the un-lighting bomb also will explode. 
 
Now you know the attributes of all bombs, please use the minimum cost to explode all bombs.
现有N颗炸弹急需引爆。

每颗炸弹有三个属性:爆炸半径ri,炸弹位置(xi, yi),还有起爆费用ci,即你需要花费ci才能引爆这个炸弹。

如果一颗未引爆的炸弹在另一颗炸弹的爆炸半径边缘或者其中,则会被连锁引爆。

此时你已得知所有炸弹的属性,用最小的花费引爆所有炸弹吧。
CN

 

Input - 输入
First line contains an integer T, which indicates the number of test cases. 
 
Every test case begins with an integers N, which indicates the numbers of bombs. 
 
In the following N lines, the ith line contains four intergers xi, yi, ri and ci, indicating the coordinate of ith bomb is (xi,yi), exploding radius is ri and lighting-cost is ci
 
Limits
- 1≤T≤20
- 1≤N≤1000
- −108≤xi,yi,ri≤108
- 1≤ci≤104
第一行为一个整数T,表示测试用例的数量。

每个测试用例开头都有一个整数N,表示炸弹的数量。

随后N行,第i行有四个整数xi,yi,ri,与ci,表示第i个炸弹的坐标(xi,yi),爆炸半径ri与起爆费用ci。

数据范围
- 1≤T≤20
- 1≤N≤1000
- −10^8≤xi, yi, ri≤10^8
- 1≤ci≤10^4
CN

Output - 输出
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the minimum cost.
对于每组测试用例,输出"Case #x: y",x表示从1开始的用例编号,y为最小费用。
CN

 

Sample Input - 输入样例

1
5
0 0 1 5
1 1 1 6
0 1 1 7
3 0 2 10
5 0 1 4

 

Sample Output - 输出样例

Case #1: 15

 

题解

  Tarjan缩点
  先根据每个炸弹的爆炸范围和坐标构造出一个有向图,然后再进行缩点。
  入度为0的点则为需要引爆的点,将其费用相加即是结果。

 

代码 C++

 1 #include <cstdio>
 2 #include <algorithm>
 3 #define ll __int64
 4 #define mx 1005
 5 int n, c[mx];
 6 
 7 struct Edge{
 8     int to, nxt;
 9 }edge[mx*mx];
10 int head[mx], iE;
11 void addEdge(int u, int v){
12     edge[iE].to = v; edge[iE].nxt = head[u];
13     head[u] = iE++;
14 }
15 
16 struct Point{
17     ll x, y, r;
18 }data[mx];
19 bool cmp(int i, int j){
20     ll oo, rr;
21     oo = (data[i].x - data[j].x)*(data[i].x - data[j].x) + (data[i].y - data[j].y)*(data[i].y - data[j].y);
22     rr = data[i].r*data[i].r;
23     return oo <= rr;
24 }
25 
26 int stack[mx], inUS[mx], iS, ID[mx], fID[mx], iF, size[mx];
27 void Tarjan(int now){
28     fID[now] = ++iF;
29     stack[++iS] = now; inUS[now] = 1;
30     int u, v, i = iS, fIDold = fID[now];
31     for (u = head[now]; ~u; u = edge[u].nxt){
32         v = edge[u].to;
33         ++size[ID[v]];
34         if (inUS[v] == 0) Tarjan(v);
35         if (~inUS[v]) fID[now] = std::min(fID[v], fID[now]);
36     }
37     if (fID[now] == fIDold){
38         while (iS >= i){
39             ID[stack[iS]] = now; inUS[stack[iS]] = -1;
40             c[now] = std::min(c[stack[iS]], c[now]);
41             --iS;
42         }
43     }
44 }
45 
46 void read(){
47     scanf("%d", &n);
48     int i, j;
49     for (i = 0; i < n; ++i){
50         scanf("%I64d%I64d%I64d%d", &data[i].x, &data[i].y, &data[i].r, &c[i]);
51         head[i] = -1; ID[i] = i; inUS[i] = 0;
52     }
53     iE = 0;
54     for (i = 0; i < n; ++i){
55         for (j = i + 1; j < n; ++j){
56             if (cmp(i, j)) addEdge(i, j);
57             if (cmp(j, i)) addEdge(j, i);
58         }
59     }
60 
61     iS = iF = 0;
62     for (i = 0; i < n; ++i){
63         if (inUS[i] == 0){ Tarjan(i); size[ID[i]] = 0; }
64     }
65 }
66 
67 int sum(){
68     int i, opt = 0;
69     for (i = 0; i < n; ++i){
70         if (size[i] == 0) opt += c[ID[i]];
71     }
72     return opt;
73 }
74 
75 int main(){
76     int t, it, i;
77     for (it = scanf("%d", &t); t; --t, ++it){
78         read();
79         printf("Case #%d: %d\n", it, sum());
80     }
81     return 0;
82 }

 

转载于:https://www.cnblogs.com/Simon-X/p/6017277.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值