Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5] ] sumRegion(2, 1, 4, 3) -> 8 update(3, 2, 2) sumRegion(2, 1, 4, 3) -> 10
Note:
- The matrix is only modifiable by the update function.
- You may assume the number of calls to update and sumRegion function is distributed evenly.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
列之和,所谓列之和,就是(i, j)就是(0, j) + (1, j) + ... + (i, j) 之和,相当于把很多个一维的区间之和拼到了一起,那么我们在构造函数中需要建立起这样一个列之和矩阵,然后再更新某一个位置时,我们只需要将该列中改变的位置下面的所有数字更新一下即可,而在求某个区间和时,只要将相差的各列中对应的起始和结束的行上的值的差值累加起来即可
public class RangeSumQuery2D {
public int[][] colSum;
public int[][] matrix;
public RangeSumQuery2D(int[][] matrix) {
this.matrix = matrix;
if (matrix == null || matrix.length == 0) {
return;
}
if (matrix[0] == null || matrix[0].length == 0) {
return;
}
int m = matrix.length;
int n = matrix[0].length;
colSum = new int[m + 1][n];
for (int i = 1; i <= m; i++) {
for (int j = 0; j < n; j++) {
colSum[i][j] = colSum[i - 1][j] + matrix[i - 1][j];
}
}
}
public void update(int row, int col, int val) {
for (int i = row + 1; i < colSum.length; i++) {
colSum[i][col] = colSum[i][col] - matrix[row][col] + val;
}
matrix[row][col] = val;
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int sum = 0;
for (int j = col1; j <= col2; j++) {
sum += colSum[row2 + 1][j] - colSum[row1][j];
}
return sum;
}
}