【Python大法好】汇总

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于分布式逻辑回归,常用的方法是使用随机梯度下降(SGD)或坐标下降(CD)等算法来进行求解。不过,牛顿法也是一种有效的优化算法,可以用于逻辑回归的求解。 牛顿法是一种二阶优化算法,可以通过求解目标函数的一、二阶导数来更新参数。具体来说,对于逻辑回归的目标函数,可以使用牛顿法来求解: $$ \begin{aligned} \min_{\boldsymbol{\theta}} \quad & J(\boldsymbol{\theta})=-\frac{1}{m} \sum_{i=1}^{m}\left[y^{(i)} \log h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)\right] \\ \text { s.t. } \quad & h_{\boldsymbol{\theta}}(\mathbf{x})=\frac{1}{1+e^{-\boldsymbol{\theta}^{\top} \mathbf{x}}} \end{aligned} $$ 其中,$y^{(i)}$为样本$i$的标签,$\mathbf{x}^{(i)}$为样本$i$的特征向量,$\boldsymbol{\theta}$为模型参数。牛顿法的更新公式为: $$ \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\left(\mathbf{H}_{k}\right)^{-1} \nabla J\left(\boldsymbol{\theta}_{k}\right) $$ 其中,$\mathbf{H}_{k}=\nabla^{2} J\left(\boldsymbol{\theta}_{k}\right)$为目标函数$J$的海森矩阵,$\nabla J\left(\boldsymbol{\theta}_{k}\right)$为目标函数$J$的一阶导数。牛顿法的优点是收敛速度快,但是需要计算海森矩阵,计算量较大。 以下是Python实现牛顿法分布式逻辑回归的代码: ```python import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler def sigmoid(z): return 1 / (1 + np.exp(-z)) def hessian(X, y, theta): m, n = X.shape H = np.zeros((n, n)) for i in range(m): xi = X[i].reshape(-1, 1) pi = sigmoid(np.dot(theta.T, xi))[0, 0] H += pi * (1 - pi) * np.dot(xi, xi.T) return H / m def logistic_regression(X, y, alpha=0.01, eps=1e-6, max_iter=100): n = X.shape[1] theta = np.zeros((n, 1)) scaler = StandardScaler() X = scaler.fit_transform(X) y = y.reshape(-1, 1) for i in range(max_iter): z = np.dot(X, theta) h = sigmoid(z) gradient = np.dot(X.T, h - y) H = hessian(X, y, theta) H_inv = np.linalg.inv(H) delta = np.dot(H_inv, gradient) theta -= alpha * delta if np.linalg.norm(delta) < eps: break return scaler, theta def predict(X, scaler, theta): X = scaler.transform(X) z = np.dot(X, theta) h = sigmoid(z) y_pred = (h >= 0.5).astype(int) return y_pred if __name__ == '__main__': # 加载数据 data = pd.read_csv('data.csv') X = data.drop('label', axis=1).values y = data['label'].values # 训练模型 scaler, theta = logistic_regression(X, y) # 预测结果 y_pred = predict(X, scaler, theta) # 计算准确率 accuracy = np.mean(y_pred == y) print('accuracy:', accuracy) ``` 在上面的代码中,首先定义了sigmoid函数和hessian函数。sigmoid函数用于计算逻辑回归中的sigmoid函数,hessian函数用于计算目标函数的海森矩阵。然后定义了logistic_regression函数,用于使用牛顿法求解逻辑回归模型的参数。最后,定义了predict函数用于对新数据进行预测。在主函数中,加载数据,训练模型,预测结果并计算准确率。 需要注意的是,牛顿法的计算量较大,如果数据量较大,可以考虑使用分布式计算框架(如Spark、Hadoop等)来加速计算。具体来说,可以将数据分成若干个小批次,分别计算海森矩阵和梯度,然后将结果汇总并更新参数。需要注意的是,在分布式计算中,需要注意数据的划分和通信开销的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值