数据
donger__chen
这个作者很懒,什么都没留下…
展开
-
数据预处理
原创 2019-04-09 19:21:54 · 152 阅读 · 0 评论 -
lightgbm实现
#交叉验证:用于验证某组参数的表现情况并画图,返回为每一轮迭代的评价值def lightgbm_cv(params,x_train,y_train,n_round,nfold,early_stopping_rounds): import lightgbm as lgb import pandas as pd from matplotlib import pyplot...原创 2019-03-10 20:30:50 · 1279 阅读 · 0 评论 -
lightgbm类别预测的一些问题
lightgbm在作类别预测的时候,有一些不同的使用方法 import lightgbm as lgb#第一种estimator=lgb.sklearn.LGBMClassifier()estimator.fit(x_train,y_train) #x_train和y_train 是numpy或pandas数据类型即可pre = estimator.predic...原创 2018-10-09 16:15:23 · 16267 阅读 · 8 评论 -
机器学习模型评价与选择
模型评估的作用从已训练得到的多个模型中挑选出较好的模型。以下假设为二分类问题,设样本集为D,分类器为f评价一:错误率与精度评价模型好坏,一个最直观的想法就是看它分对或分错的比例,即准确率与错误率。准确率: acc(f,D)=1m∑I(g(xi)=yi)acc(f,D)=1m∑I(g(xi)=yi)acc(f,D)=\frac{1}{m}\sum I(g(xi)= yi)...原创 2018-07-10 18:05:25 · 1147 阅读 · 0 评论 -
无约束优化问题——线搜索
注明:本文的向量均取为列向量。 本文尝试通过线搜素的方法解决无约束优化问题 。 线搜索方法是在每一步迭代中先计算一个线性方向p_k,然后决定一个步长alpha_k。具体迭代点变化如下所示: 因此,线搜索方法的关键在于怎样确定搜索方向以及每一次迭代的步长应取多大。...原创 2018-08-25 17:03:05 · 2383 阅读 · 0 评论 -
数据挖掘---认识数据
原创 2019-04-03 12:18:38 · 144 阅读 · 0 评论