
网络表示学习
主要介绍最近两年比较热门的一个研究领域:网络表示学习Network Embedding(也称图表示学习Graph Representation)包括DeepWalk、LINE、Node2vec、NetMF等模型,供学者和工程师借鉴。
东方小烈
这个作者很懒,什么都没留下…
展开
-
GraphVite 大规模网络表示学习,如何使用你自己的数据,以LINE/DeepWalk为示例
GraphVite有两种方式,一种是使用Python接口,一种是使用命令行的方式。上两篇博客分别介绍了使用命令行和Python接口的方式。现在介绍下,1.随机生成一个graph,这里使用networkx里的工具,生成一个BA无标度的图,并保存为edge_list格式,import networkx as nxG = nx.barabasi_albert_graph(100, 2)nx...原创 2019-11-02 18:53:32 · 1143 阅读 · 1 评论 -
GraphVite 大规模网络表示学习,DeepWalk示例
测试Graphvite实现的DeepWalk的表示学习在BlogCatalog中的效果。In [2]: import graphvite as gvIn [3]: import graphvite.application as gapIn [4]: app = gap.GraphApplication(dim=128)In [5]: app.load(file_name=gv.da...原创 2019-11-01 21:28:46 · 596 阅读 · 0 评论 -
GraphVite 大规模网络表示学习,LINE 示例
下载正常安装GraphVite不容易,如果你可以轻松安装,的确是运气很好。需要gcc版本,conda版本,机器环境刚好与作者相符合才行。然后运行,基本的示例graphvite baseline quick start如果PyTorch版本太低,会报错AttributeError: module 'torch' has no attribute ‘as_tensor'如果PyTo...原创 2019-11-01 21:25:37 · 578 阅读 · 0 评论 -
大规模网络表示学习库GraphVite安装
GraphVite重新实现了DeepWalk,LINE,Node2vec等方法,速度提高了几十倍,的确牛,不知道啥时候也能把我们等方法也实现上去,哈哈。这个Tangjian实验室提出了LINE,面向大规模的网络表示学习方法,同一时期,Tangjie也提出了另一个NetSMF,也是很不错。但是相比之下,还是GraphVite速度更快,支持方法也更广泛。实际上这三种方法DeepWalk,LINE,...原创 2019-11-01 15:39:11 · 784 阅读 · 0 评论 -
网络表示学习系列Network Embedding / Graph Representation:教十分钟一步步实现DeepWalk 模型 KDD'14
DeepWalk : DeepWalk: Online Learning of Social Representations发表于KDD 14年。网络表示学习最近两年非常火热,这里的网络Network和图Graph意思相同,不再做区分。网络表示学习故名思义,是面向网络结构节点或者整个图的表示学习。输入一个G=(V,E),V包含了网络中的节点,E包含了网络中的连边。传统的网络表表达方法,我们...原创 2019-04-27 15:45:49 · 1976 阅读 · 3 评论 -
TigerGraph 初探(2)
输入gsql命令[tiger@ ~]$ gsql目前图数据库是空的GSQL-Dev > ls---- Global vertices, edges, and all graphsVertex Types: - VERTEX user(PRIMARY_ID id STRING, fans_num INT) WITH STATS="OUTDEGREE_BY_EDGE...原创 2019-09-03 16:49:34 · 753 阅读 · 1 评论