详解Python使用模拟退火算法求解列表“最大值”

39 篇文章 14 订阅
6 篇文章 0 订阅

模拟退火算法可以看作是爬山算法的一种改进,如果前方有更优解就前进,如果没有更优解就以一定概率前进。与简单的爬山算法相比,模拟退火算法有可能跳出局部而得到全局最优解,但也有可能得到更差的解,算法参数的设置非常重要。


def simAnnealingMax(lst, howFar):

    '''

    lst:待确定最大值的列表

    howFar:爬山时能看到的“最远方”,越大越准确

    '''

    #由于切片是左闭右开区间,所以howFat必须大于1

    assert howFar>1, 'parameter "howFar" must >1'

    

    #从列表第一个元素开始爬

    #如果已经到达最后一个元素,或者已找到局部最大值,结束

    start = 0

    ll = len(lst)

    #随机走动的次数

    times = 1

    while start <= ll:

        #当前局部最优解

        m = lst[start]

        #下一个邻域内的数字

        loc = lst[start+1:start+howFar]

        #如果已处理完所有数据,结束

        if not loc:

            return m

        #下一个邻域的局部最优解及其位置

        mm = max(loc)

        mmPos = loc.index(mm)

        #如果下一个邻域内有更优解,走过去

        if m <= mm:

            start += mmPos+1

        else:

            #如果下一个邻域内没有更优解,以一定的概率前进或结束

            delta = (m-mm)/(m+mm)

            #随机走动次数越多,对概率要求越低

            if delta <= random()/times:

                start += mmPos+1

                times += 1

            else:

                return m



函数用法为:

from random import randint

lst = [randint(1, 100) for i in range(200)]

print(simAnnealingMax(lst, k))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dongfuguo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值