PyTorch基础(11)----- torch.sum()方法

本文详细介绍了PyTorch中torch.sum函数的用法,包括对输入张量求和的基本操作以及指定维度求和的功能。通过案例展示了如何按行、按列以及在特定维度上求和,并讨论了keepdim参数的作用。了解这些内容有助于更好地理解和应用张量的求和操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法1详解
torch.sum(input, *, dtype=None) → Tensor
  • input:输入的张量
案例
x = torch.randn(1, 3)
print(x)
y = torch.sum(x)
print(y)

在这里插入图片描述

方法2详解
torch.sum(input, dim, keepdim=False, *, dtype=None) → Tensor
  • input:输入的张量
  • dim:求和的维度,如果dim=1,则按行求和;如果dim=0,则按列求和
  • keepdim:默认为False,若keepdim=True,则返回的Tensor除dim之外的维度与input相同
案例
  • 案例1
x = torch.arange(0, 12).view(3, 4)
print(x)
y = torch.sum(x, dim=1)
print(y)

在这里插入图片描述

  • 案例2
x = torch.arange(0, 12).view(3, 4)
print(x)
y = torch.sum(x, dim=0)
print(y)

在这里插入图片描述

  • 案例3
x = torch.arange(0, 12).view(3, 4)
print(x)
y = torch.sum(x, dim=0, keepdim=True)
print(y)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾狗PhD

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值