自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(126)
  • 收藏
  • 关注

原创 深度学习中的偏差-方差权衡:规模效应下的新范式

摘要 传统机器学习中的偏差-方差权衡是理解模型泛化的核心框架,但在深度学习时代,大规模数据和超参数化模型带来了新变化。经典理论认为偏差与方差呈U形权衡关系,而现代实践表明,通过扩大模型和数据规模,可以更独立地优化两者。深度学习中还出现“双下降”现象,即过参数化模型仍能保持良好泛化能力,这与优化算法的隐式正则化有关。现代策略强调:高偏差时增大模型容量,高方差时增加数据或应用正则化技术。尽管理论框架演进,偏差-方差分析仍是诊断模型的关键工具,而规模效应和隐式正则化成为深度学习时代的新指导原则。

2025-12-03 23:44:58 879 2

原创 Dropout技术全景解析:从直觉到实践的正则化艺术

本文深入探讨了深度学习中的Dropout技术,系统阐述了其设计思想、数学原理和应用方法。Dropout通过随机丢弃神经元有效解决了神经网络过拟合问题,其核心在于训练时随机"关闭"部分神经元(通常概率为0.2-0.5),测试时使用完整网络。该技术具有生物学启示,模仿有性繁殖机制防止神经元形成固定依赖关系,同时实现了高效的隐式模型集成。

2025-12-03 11:42:43 828 1

原创 深入浅出:L1与L2正则化的本质区别与实战对比

本文深入解析了机器学习中L1和L2正则化的区别与应用。L1正则化(Lasso)通过绝对值惩罚产生稀疏解,能自动进行特征选择;L2正则化(Ridge)通过平方值惩罚均匀缩小权重,防止过拟合。几何上,L1的菱形约束产生尖角效应,而L2的圆形约束实现平滑收缩。实验显示,L1能将无关特征系数精确压缩为0,L2则保留所有特征但降低其影响。实际应用中,需要特征选择时用L1,防止过拟合时用L2,二者各有优势。

2025-12-03 10:56:10 793

原创 大模型训练之谜:为何只用一个“小批次”就能逼近全局最优解?

摘要:本文探讨了大模型训练中随机梯度下降(SGD)的底层原理及其卓越泛化能力的来源。与传统精确优化不同,大模型训练采用"概率性探索"策略,通过小批次数据的梯度估计全局梯度,引入的噪声反而帮助模型跳出局部最优,找到泛化性强的平坦最小值。文章通过线性回归实例对比了批量梯度下降与SGD的差异,并详细阐释了学习率调度、自适应优化器等关键策略如何协同保证收敛。最终指出,大模型训练的核心范式转变在于:不再追求训练集上的数学最优解,而是通过SGD的概率性探索获得对新数据的强大适应能力,这正是深度学习成

2025-12-03 09:46:55 703

原创 机器学习模型误差深度解读:从三类来源到偏差-方差权衡

本文从第一性原理出发,系统剖析了机器学习模型误差的三大来源:数据固有噪声(不可消除)、模型结构偏差(系统性误差)和数据不足导致的方差(过拟合根源)。通过数学公式和直观图示,阐释了偏差-方差权衡这一核心矛盾,即模型复杂度对误差的双重影响。最后提供了诊断流程和优化策略对照表,指导实践者通过调整模型复杂度、数据量和正则化等方法,在偏差和方差之间找到最佳平衡点,从而提升模型泛化能力。理解这些误差本质是成为优秀机器学习实践者的关键第一步。

2025-12-01 22:34:02 1178 1

原创 正则化全面解析:从过拟合防治到模型优化之道

正则化技术是机器学习和深度学习中防止过拟合的关键方法。其核心思想是通过对模型复杂度施加约束,在拟合训练数据和保持模型简单之间寻求平衡,从而提升泛化能力。主要方法包括L1/L2正则化、Dropout、数据增强等,每种技术各具特点:L1正则化能产生稀疏解实现特征选择,L2正则化使权重均匀缩小。从数学原理看,正则化可视为优化问题中的约束条件或贝叶斯推断中的先验分布。实际应用中需根据问题特点选择合适方法,并通过系统化流程实现模型优化。正则化技术通过偏差-方差权衡有效改善了模型在新数据上的表现。

2025-12-01 11:34:19 1015 2

原创 梯度下降法深度解析:为什么负梯度方向能导向最优解?

梯度下降是最优化问题的核心算法,其有效性源于数学上的必然性。负梯度方向是函数值下降最快的方向,这一结论可通过方向导数和柯西-施瓦茨不等式严格证明。通过一阶泰勒展开可见,梯度下降确保每一步迭代都使函数值下降。从批量梯度下降(BGD)到随机梯度下降(SGD)、动量法以及自适应学习率方法,梯度下降不断演进以解决计算效率和收敛稳定性问题。实例分析表明,负梯度方向能有效引导参数逐步逼近最优解。梯度下降及其变体在现代机器学习中仍具有不可替代的地位,理解其数学本质对算法应用和改进至关重要。

2025-11-25 20:40:26 957 2

原创 神经网络优化器深入解读

本文系统介绍了深度学习优化器的核心原理与演进历程。优化器旨在解决高维参数空间中的损失函数最小化问题,输入模型参数和梯度信息,输出更新后的参数。从基础SGD到带动量的SGDM,再到自适应学习率的AdaGrad和RMSProp,最终融合为Adam优化器。理论原理基于梯度下降,通过动量机制和自适应步长调整提升收敛效率。优化器在训练迭代中处于参数更新环节,其核心步骤包括梯度计算、动量更新和参数调整。

2025-11-25 20:14:42 1077

原创 深入理解PyTorch中的detach()函数

PyTorch中的detach()方法用于将张量从计算图中分离,使其在后续梯度计算中被视为常数。该方法创建共享数据存储但requires_grad=False且无计算历史的新张量,阻止梯度通过该张量反向传播。通过示例代码对比展示了使用detach()前后梯度计算的差异:未分离时梯度正常传播(结果为684),分离后梯度仅计算剩余部分(结果为216)。detach()在模型评估、强化学习等需要冻结部分计算的场景中非常实用,能有效控制梯度传播范围。

2025-11-25 19:18:56 433

原创 Excel数据读取与保存全面指南:从单文件到批量处理-Python

本文介绍了使用Python Pandas库进行Excel文件读写操作的核心方法。主要内容包括:1)read_excel()和to_excel()函数的使用详解,涵盖参数配置和典型应用场景;2)Excel数据读取的多种方式,包括单/多工作表处理、特定区域读取和批量文件处理;3)数据导出的格式控制技巧;4)完整的实战示例,展示从数据读取到保存的全流程。文章提供了详细的代码示例和参数说明,帮助开发者高效处理Excel数据,适用于数据分析、报表生成等多种应用场景。

2025-11-20 22:01:47 815 1

原创 图像的安全读取与保存指南-基于Python的OpenCV库

OpenCV图像处理中,cv2.imread()无法直接处理中文路径,可通过二进制读取配合cv2.imdecode()解决。文章介绍了两种核心功能:1)采用np.fromfile读取文件并通过cv2.imdecode解码,支持中文路径及多通道保留;2)智能保存方法针对不同格式(TIFF/PNG/JPEG等)设置优化参数。代码示例展示了单文件处理和批量处理场景,包括路径管理、格式转换和错误处理。该方法有效解决了中文路径兼容性问题,确保了图像数据的完整性。

2025-11-20 15:28:39 867

原创 路径/文件/目录常用操作-基于Python的pathlib库

基于Python的pathlib库整理了路径/目录/文件的常用操作

2025-11-19 10:20:56 1411

原创 人工智能基石:从 MP 模型、感知机到神经网络的演进之路

从单个神经元的数学蓝图到ChatGPT的奇迹,人工智能经历了怎样的演化之旅?1943年,MP模型首次用数学公式描述生物神经元,开创了人工神经网络的理论先河。1958年,感知机为其注入“学习能力”,却因无法解决简单异或问题而陷入寒冬。直到多层神经网络的出现,通过隐藏层、非线性激活和反向传播三大突破,彻底克服了线性不可分困境,奠定了深度学习的基石。这篇技术简史将带您领略从MP模型到现代神经网络的思想谱系,揭示智能计算背后的第一性原理。

2025-11-16 08:00:00 1513

原创 循环神经网络(RNN)全面解析

本文系统介绍了循环神经网络(RNN)的核心原理与应用。RNN通过循环连接和参数共享两大创新设计,有效解决了序列数据的建模问题。文章详细阐述了RNN的工作流程,包括初始化、循环计算和输出生成三个关键步骤,并通过正弦波预测和文本生成两个实例展示了RNN的实际应用。RNN的优势在于处理变长序列、捕捉时序依赖关系,但也存在梯度消失/爆炸、长期记忆有限等缺陷。最后,文章总结了RNN在自然语言处理、语音识别等领域的广泛应用,并指出其演进方向。

2025-11-15 19:48:48 1284

原创 全连接层详解:从原理到应用的全面解析

本文系统介绍了深度学习中的全连接层(密集层),阐述了其作为分类器或决策器的核心作用。全连接层通过全局感知和加权组合将分布式特征映射到标记空间,具有强大的非线性拟合能力。文章详细解析了其关键计算步骤(线性变换、添加偏置、非线性激活),并举例说明了其在手写数字识别中的应用流程。最后总结了全连接层的优缺点:参数量大易过拟合但表示能力强,适用于图像分类、回归预测等多种场景,同时指出了现代网络设计中用全局平均池化替代的趋势。全连接层作为深度学习的基础组件,其特征整合与映射功能仍具有重要价值。

2025-11-15 08:00:00 767

原创 LoRA(低秩适应):大模型高效微调的革命性方法

LoRA(低秩适应)是一种高效微调大模型的方法,通过低秩矩阵分解大幅减少训练参数量。其核心原理是利用大模型权重更新的低秩特性,仅训练注入的小型适配矩阵(通常为原始参数的0.01%-1%),在冻结原模型的基础上实现任务适配。相比全参数微调,LoRA可降低显存需求数百倍(如GPT-3从1.2TB降至350GB),且支持动态切换任务权重或合并推理。

2025-11-14 10:53:36 1088

原创 大模型微调技术全景解析:从基础理论到工程实践

大模型微调摘要:微调是在预训练大模型基础上,针对特定任务/领域进行二次训练的技术,实现从通用到专业的适配。主要方法包括全参数微调(高成本但性能好)和参数高效微调(LoRA/Adapter等,低资源需求)。标准流程包含模型选择、数据准备、结构调整、训练部署等环节。其局限性体现在可能遗忘通用知识、依赖数据质量、存在性能天花板等问题。目前该技术正向自动化、量化感知等方向发展,是AI领域专用化落地的关键技术。

2025-11-14 10:48:41 672

原创 Softmax 与 Sigmoid:深入理解神经网络中的两类激活函数

摘要: 本文详细对比了神经网络中Softmax和Sigmoid两种激活函数的核心差异。Sigmoid将输入独立映射到(0,1)区间,适用于二分类和多标签场景;Softmax则将多个输入转换为概率分布,输出总和为1,专用于互斥多分类问题。关键区别在于:Sigmoid输出相互独立,Softmax输出存在竞争关系。实践选择需根据问题类型(互斥/非互斥)和损失函数搭配。理解二者的特性和适用场景对构建有效模型至关重要。

2025-11-09 23:00:20 514

原创 卷积神经网络(CNN)全面解析

卷积神经网络(CNN)是一种专门处理网格结构数据的深度学习模型,模仿生物视觉系统,通过多层结构自动提取局部特征。其核心设计包括局部感知、权值共享和层次化特征提取。CNN包含卷积层(特征提取)、激活函数(引入非线性)、池化层(降维)和全连接层(分类决策)。计算过程涉及卷积核滑动、点乘求和及特征图生成。CNN广泛应用于图像分类、目标检测、医学影像分析等领域,通过仿生结构和层次化抽象高效处理图像数据。

2025-11-08 22:07:32 1913 2

原创 神经网络中的反向传播与梯度下降

摘要: 反向传播和梯度下降是神经网络训练的核心算法,用于优化模型参数。梯度下降通过沿负梯度方向更新参数最小化损失函数,其数学原理基于泰勒展开,确保损失值必然减小。反向传播利用链式法则高效计算各层参数梯度,通过误差反向传递实现参数更新。两者协同工作:反向传播确定各参数调整方向(梯度计算),梯度下降则控制调整幅度(参数更新)。链式法则作为反向传播的数学基础,通过复合函数求导实现从输出层到输入层的梯度逐层传播。 (字数:150)

2025-11-07 21:32:27 1793

原创 卷积神经网络中的卷积操作

卷积是一种用于模式匹配的数学操作,通过滑动窗口点积实现特征提取。卷积核作为模式探测器,检测图像中的局部特征如边缘、纹理等。输入与输出尺寸关系由公式H_out = (H_in - K + 2P)/S + 1决定。特征图反映了输入中特定特征的分布强度,其数值表示匹配程度。卷积核大小通常选择3×3以平衡计算效率和感受野,数值则通过反向传播学习优化。这一机制赋予CNN平移不变性和高效的特征提取能力。

2025-11-07 08:00:00 1153

原创 神经网络层结构全解析:从基础构建到深度学习模型

神经网络本质上是复杂的数学函数,能够将输入数据映射到期望输出。其核心结构包括输入层(接收原始数据)、隐藏层(进行非线性特征变换)和输出层(生成最终预测)。通过引入非线性激活函数和分层特征抽象,神经网络可以处理高度复杂的模式。常见层类型包括全连接层、卷积层(提取局部特征)、循环层(处理序列数据)、池化层(压缩数据)等。训练过程通过前向传播计算输出、反向传播优化参数实现。神经网络的价值在于自动从数据中学习映射规则,无需人工定义复杂规则,使其在图像、语音等复杂任务中表现出色。

2025-11-06 10:37:34 1138

原创 Softmax 函数:深度学习中的概率大师

本文深入解析了Softmax函数在深度学习多分类任务中的关键作用。通过将神经网络的原始输出(logits)转换为合法的概率分布,Softmax满足了非负性和归一性两大要求,使结果具有明确概率解释。文章详细拆解了Softmax的数学原理和计算过程,阐述了其与交叉熵损失函数的完美配合优势,并分析了指数函数的放大效应特性。同时指出Softmax的局限性(如类别互斥假设)及替代方案(如温度Softmax)。最后给出实用建议:Softmax适用于单标签互斥分类任务,但不适合多标签或类别极多的情况。全文通过具体示例和代

2025-11-06 10:02:45 933

原创 Python 类的方法全面指南

本文全面解析了Python面向对象编程中的各种方法类型及其应用场景。主要内容包括: 方法类型总览:系统介绍了实例方法、类方法、静态方法、抽象方法、属性方法和特殊方法六大类型,对比了它们的装饰器、参数特点和调用方式。 实例方法:最常用的方法类型,通过self参数操作实例属性,必须通过实例调用。 类方法:使用@classmethod装饰器,通过cls参数操作类属性,常用于工厂模式创建对象。 静态方法:使用@staticmethod装饰器,作为与类相关的工具函数,不依赖实例或类状态。

2025-10-21 17:17:07 993

原创 一文掌握Python四大核心数据结构:变量、结构体、类与枚举

本文对比了Python中的基础变量、结构体、类和枚举四种核心数据类型。基础变量用于存储单个数据,操作简单;结构体(通过namedtuple或dataclass实现)组织相关数据项;类封装数据和行为,支持继承和多态;枚举定义命名常量集合,提高代码可读性。选用原则取决于封装层次和可变性需求:基础变量适合简单数据,结构体组织轻量级数据,类建模复杂实体,枚举表示固定选项。掌握这些概念有助于编写清晰、高效的Python代码。

2025-10-21 11:37:41 1022

原创 机器学习中的“双参世界”:模型参数与超参数详解

本文系统阐述了机器学习中模型参数与超参数的核心区别及其在模型训练中的协同作用。参数是模型从数据中自动学习的内在变量(如权重、偏置),直接决定预测能力;而超参数是训练前手动设置的外部配置(如学习率、网络层数),用于控制训练过程与模型结构。文章通过梯度下降公式、下山比喻和线性回归实例,直观展示了二者关系,并解析了“调参侠”实际优化的是超参数这一现象,同时总结了网格搜索、随机搜索等超参数调优方法。理解参数与超参数的差异,是掌握机器学习模型训练的关键基础。

2025-10-16 10:20:53 599

原创 最优化算法:在复杂世界中寻找最优解的艺术

优化思维是日常生活与科学决策的核心,通过系统化的数学方法寻找最佳解决方案。优化问题的三要素包括决策变量、目标函数和约束条件,三者共同构建完整的优化模型。根据问题特性,优化可分为线性规划、非线性规划、整数规划等类型,并采用梯度下降法、遗传算法等不同求解方法。系统化的工作流程涵盖建模、算法选择、求解验证等步骤,广泛应用于工程、金融、人工智能等领域。掌握优化思维需要结合第一性原理与自上而下的思考框架,确保从本质出发解决问题。

2025-10-14 10:57:33 794

原创 算法复杂度完全解析

本文介绍了算法复杂度分析的核心内容,包括: 复杂度分析的必要性、大O表示法、时间复杂度分析、空间复杂度分析、复杂代码分析策略。复杂度分析是算法设计和优化的基础工具。

2025-10-14 10:18:29 727

原创 ​​ 算法知识图谱:终结碎片化学习的终极指南

本文系统性地介绍了算法知识图谱的四层学习体系:算法基石(复杂度分析与数学基础)、核心数据结构(数组、树、图等)、算法思想(分治、动态规划等)以及专业领域算法(图像处理、机器学习等)。通过“内功→兵器→心法→实战”的递进结构,该图谱旨在帮助学习者告别碎片化学习,建立完整的算法知识框架。文章强调,掌握这一体系的核心在于培养算法思维——即分析问题、选择策略、评估优化的系统性能力,而非单纯记忆算法本身。建议学习者遵循图谱的层次路径,结合实践项目,循序渐进地提升算法设计与应用水平。

2025-10-13 16:29:53 985 1

原创 深入理解K近邻(KNN)算法原理

KNN算法是一种直观易用的分类算法,通过寻找最近邻的K个样本来预测新数据类别。本文详细介绍了KNN的核心思想、数学原理、Python实现和调参技巧。KNN不需要显式训练,但计算量大,对数据尺度敏感。关键参数K值的选择至关重要,过小易过拟合,过大易欠拟合。文章提供了手动实现和scikit-learn应用,并演示了交叉验证和网格搜索优化K值的方法。KNN适用于小规模数据集,但需注意其计算效率和维度灾难问题。

2025-10-13 11:17:47 895 1

原创 特性列举法:用系统化思维做好特征工程

摘要:特性列举法是一种结构化拆解复杂事物的创新方法,特别适用于机器学习中的特征工程。该方法通过名词特性(实体构成)、形容词特性(状态属性)和动词特性(行为模式)三个维度,系统性地挖掘数据价值。以共享单车故障预测为例,展示了如何从单车结构、使用状态和骑行行为等角度生成可量化特征,并通过特征金字塔整合不同层级的特征。相比传统方法,特性列举法具有系统性、可解释性和创造性三大优势,能有效避免特征遗漏,提升模型性能。该方法为数据科学项目提供了清晰的"勘探地图",是连接业务本质与数

2025-10-11 08:15:00 1838

原创 决策树完全指南:从原理到实战的系统解读

决策树是机器学习中一种直观且易于理解的算法,通过树形结构模拟人类决策过程进行分类或预测。文章系统介绍了决策树的原理、发展历程、构建方法和优化策略,包括信息熵、信息增益等核心概念,以及ID3、C4.5、CART等算法的演进。重点讲解了防止过拟合的剪枝技术和集成方法(如随机森林、XGBoost),并通过鸢尾花分类和泰坦尼克号生存预测的Python示例展示实际应用。决策树优势在于可解释性强、能处理混合数据,但也存在过拟合倾向和对数据敏感的局限性。掌握决策树技术有助于平衡预测准确性与模型可解释性。

2025-10-11 08:00:00 715

原创 支持向量机(SVM)完全解读

SVM(支持向量机)是一种强大的监督学习分类算法,核心思想是通过寻找最大间隔的决策边界来实现最优分类。其核心概念包括支持向量、决策边界、间隔边界和核技巧。SVM既能处理线性可分数据(硬间隔),也能通过软间隔和核方法解决非线性问题。相比于其他算法,SVM具有清晰的决策边界和良好的泛化能力,尤其适合小样本高维数据。然而,其计算复杂度较高,且核函数选择影响模型性能。实际应用中需进行数据标准化和参数调优,以平衡分类精度与模型复杂度。

2025-10-10 08:30:00 989 1

原创 全面解析损失函数:从原理到实战的完整指南

这篇指南系统阐述了损失函数在机器学习中的核心作用,将其比喻为模型的“导航系统”和“成绩单”,负责量化预测误差、指导参数优化并评估模型性能。文章从第一性原理出发,解析了损失函数的数学基础,并采用任务导向的分类方式,详细对比了回归任务(如MSE、MAE)、分类任务(如交叉熵、焦点损失)、生成模型(如对抗损失)等领域常用损失函数的公式、特点及适用场景。同时,提供了结合数据特性选择损失函数的决策流程、超参数调优及多损失函数组合等实战策略。

2025-10-10 08:15:00 2440 1

原创 随机种子:机器学习可复现性的基石

在机器学习实验中,随机种子是确保结果可复现的关键。它通过为伪随机数生成器设置固定初始值,将看似随机的过程(如数据划分、模型初始化)转化为确定性过程。只需在代码中设定特定种子值(如random_state=42),即可保证每次运行获得一致的数据集划分和训练结果,从而消除不确定性,使模型评估和对比更加科学可靠。

2025-10-09 08:30:00 1191

原创 机器学习模型生命周期详解:训练、验证、测试与推理

你真的分清模型测试与模型推理了吗?本文用“建造天文望远镜”的生动比喻,带你穿透迷雾,一目了然看懂机器学习模型的全生命周期。我们将从第一性原理深度剖析训练、验证、测试、推理四大核心环节的本质区别与内在联系。不止于概念讲解,文章还为你构建完整的知识图谱,扩展模型部署、MLOps等关键概念。无论你是初学者还是从业者,阅读本文都将帮你建立清晰认知体系,真正理解模型从“实验室研发”到“战场应用”的完整旅程。

2025-10-09 08:15:00 1723 1

原创 机器学习数据集划分完全指南:理论与实战详解

数据集划分是机器学习项目成功的关键,直接影响模型的泛化能力。本文系统介绍了训练集、验证集和测试集的职能与关系,对比了留出法、交叉验证和自助法等划分方法,并提供了不同数据规模下的划分比例建议。通过Python代码示例展示了标准划分流程和交叉验证实现,强调了避免数据泄露的重要原则,包括严格隔离测试集、基于训练集进行特征工程等。文章还针对时间序列、不平衡数据等特殊场景提供了处理建议,总结了使用随机种子、记录划分细节等最佳实践,帮助开发者建立可靠的模型评估框架。

2025-10-09 08:00:00 1013

原创 语义标签图 vs 实例映射图:从概念到实战详解

摘要:语义标签图和实例映射图是计算机视觉中两种核心的图像标注方法。语义标签图按类别标注像素(如道路、车辆),适用于区域统计分析;实例映射图则为每个物体分配唯一ID(如车辆1、车辆2),适合个体识别与追踪。前者回答"这是什么",后者回答"这是哪个"。两者可相互转换,实例映射图包含更细粒度的信息。在细胞图像分析中,语义标签图适合计算死活细胞比例,而实例映射图能精确统计细胞数量并跟踪单个细胞。实际应用中,根据任务需求选择合适的方法,两者常结合使用以实现更全面的图像理解。

2025-09-30 08:30:00 1046

原创 神经网络中的池化层:以“有意失真”换取“强大泛化”的智慧

池化层是卷积神经网络中实现特征抽象的关键技术,通过选择性遗忘局部细节(如精确位置信息)来保留核心特征(如特征存在性)。它采用最大值池化或平均值池化对局部区域进行浓缩,在降维的同时赋予网络平移不变性。虽然池化会导致信息失真,但这种"有益的失真"提升了模型的鲁棒性。现代架构中池化层可能被步长卷积替代,但其设计理念仍是理解CNN抽象能力的重要部分。池化层并非所有神经网络的标配,其适用性取决于具体任务需求和数据特性。

2025-09-30 08:15:00 812

原创 朴素贝叶斯算法完全解析:从第一性原理到实践应用

朴素贝叶斯是一种基于贝叶斯定理的监督学习分类算法,通过假设特征间条件独立简化计算。它利用先验概率和似然计算后验概率进行分类,适用于垃圾邮件检测、文本分类等场景。算法优点包括简单高效、可解释性强和对小数据友好,核心在于“朴素”的独立性假设平衡了理论与实用性。作为机器学习的基础工具,它在生态中承担着基准模型和入门教学的重要角色。

2025-09-29 08:30:00 1003

Vector常用操作的工程文件

https://blog.csdn.net/dongke1991/article/details/138095655该博文代码示例的工程文件,梳理一下C++里面vector的常用操作。

2024-06-06

测量系统-误差分析-测量不确定度

误差表示测量结果对真值的偏离量是一个点,测量不确定度表示被测量之值的分散性,在数轴上表示一个区间。测量不确定度是一个与测量相关联的参数,它表征了可以合理地赋予被测量的量值分散度; 测量不确定度用标准偏差表示时称为标准不确定度; 对于测量结果y,其总不确定度成为合成标准不确定度; 测量不确定度用说明了置信水准的区间的半宽度的表示方法则称为扩展不确定度。

2023-09-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除