题解 POJ1191 【棋盘分割】

Problem

POJ1191.png

Solution

显然,我们可以发现,平均值和n都是确定的,因此就可以很愉快地区间dp了。
O(170859375)好像过不了诶时间复杂度 $ O(8^5 * 15^2) $ 。
一下为本题坑点:

  • 每次分割后,都会扔掉一半
  • POJ上double输出用"%f"!!!

Code

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int oo=0x3f3f3f3f;
int n,a[20][20],s[20][20],vis[20][20][20][20][20];
int f[20][20][20][20][20],tot;
int dp(int R1,int C1,int R2,int C2,int tot)
{
    int &res=f[R1][C1][R2][C2][tot];
    if(vis[R1][C1][R2][C2][tot]) return res;
    vis[R1][C1][R2][C2][tot]=1;
    if(tot>(R2-R1+1)*(C2-C1+1)) return res=oo;
    if(tot==1)
    {
        double v=s[R2][C2]-s[R2][C1-1]-s[R1-1][C2]+s[R1-1][C1-1];
        return res=v*v;
    }
    res=oo;
    for(int R=R1;R<R2;R++)
    {
        int t=1;
        res=min(res,dp(R1,C1,R,C2,t)+dp(R+1,C1,R2,C2,tot-t));
        t=tot-1;
        res=min(res,dp(R1,C1,R,C2,t)+dp(R+1,C1,R2,C2,tot-t));
    }
    for(int C=C1;C<C2;C++)
    {
        int t=1;
        res=min(res,dp(R1,C1,R2,C,t)+dp(R1,C+1,R2,C2,tot-t));
        t=tot-1;
        res=min(res,dp(R1,C1,R2,C,t)+dp(R1,C+1,R2,C2,tot-t));
    }
    return res;
}
int main()
{
    #ifdef local
    freopen("pro.in","r",stdin);
    #endif
    scanf("%d",&n);
    for(int i=1;i<=8;i++) for(int j=1;j<=8;j++) { scanf("%d",&a[i][j]); tot+=a[i][j]; }
    for(int i=1;i<=8;i++) for(int j=1;j<=8;j++) s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
    double pj=(double)tot/n;
    printf("%.3lf\n",sqrt(((double)dp(1,1,8,8,n)-tot*pj)/n));
    return 0;
}

转载于:https://www.cnblogs.com/happyZYM/p/11521245.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值