运行pytorch时,训练很正常,但是如果切换到eval()模式之后再继续训练, 发现报错:
RuntimeError: cudnn RNN backward can only be called in training mode
原因分析:由于在训练时,设置的是net.train() 切换到预测模式时, 设置为net.eval(), 再回到训练环节,此时的网络依然是eval()模式,因此出现上述bug, 只要在继续训练模型之前加上net.train()即可完美解决问题
在使用PyTorch进行深度学习模型训练时,从train()模式切换到eval()模式后再返回train()模式可能会遇到RuntimeError。本文详细解释了这一错误的原因,并提供了解决方案,只需在继续训练前重新调用net.train()即可。
运行pytorch时,训练很正常,但是如果切换到eval()模式之后再继续训练, 发现报错:
RuntimeError: cudnn RNN backward can only be called in training mode
原因分析:由于在训练时,设置的是net.train() 切换到预测模式时, 设置为net.eval(), 再回到训练环节,此时的网络依然是eval()模式,因此出现上述bug, 只要在继续训练模型之前加上net.train()即可完美解决问题
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
1141
2156

被折叠的 条评论
为什么被折叠?