package course;
import java.util.Arrays;
public class RadixSort {
public static void main(String[] args) {
int[] arr = {53, 3, 542, 748, 14, 214};
radixSort(arr);
System.out.println("排序后:" + Arrays.toString(arr));
// 测试一下基数排序的速度,给80000个数据,测试一下(46毫秒)
// 创建一个80000个随机数据的数组
int[] array = new int[80000];
for (int i = 0; i < 80000; i++) {
array[i] = (int)(Math.random() * 8000000); // 生成一个[0,8000000)的数
}
long date1 = System.currentTimeMillis();
radixSort(array);
long date2 = System.currentTimeMillis();
System.out.println("排序用的时间是:" + (date2 - date1));
}
// 基数排序方法
public static void radixSort(int[] arr) {
// 定义一个二维数组,表示10个桶,每个桶就是一个一维数组
// 说明
// 1. 二维数组包含10个一维数组
// 2. 为了防止在放入数的时候数据溢出,则每个一维数组(桶),大小定为arr.length
// 3. 很明显基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
// 为了记录每个桶中实际存放了多少个数据,我们定一个一维数组来记录各个桶每次放入的数据个数
// 可以这样理解
// bucketElementCounts[0],记录的就是bucket[0]桶放入的数据的个数
int[] bucketElementCounts = new int[10];
/*
// 第一轮(针对每个元素的个位进行排序处理)
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的个位的值
int digitOfElement = arr[j] % 10;
// 放入到对应的桶中
bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
int index = 0;
// 遍历每一个桶,并将桶中的数据放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中有数据我们才放入到原数组中
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组),放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr中
arr[index++] = bucket[k][l];
}
// 第一轮处理后需要将每个 bucketElementCounts[k] = 0
bucketElementCounts[k] = 0;
}
}
System.out.println("第一轮对个位的排序处理 arr = " + Arrays.toString(arr));
// 第二轮(针对每个元素的十位进行排序处理)
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的十位的值
int digitOfElement = arr[j] / 10 % 10;
// 放入到对应的桶中
bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
index = 0;
// 遍历每一个桶,并将桶中的数据放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中有数据我们才放入到原数组中
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组),放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr中
arr[index++] = bucket[k][l];
}
bucketElementCounts[k] = 0;
}
}
System.out.println("第二轮对十位的排序处理 arr = " + Arrays.toString(arr));
// 第三轮(针对每个元素的百位进行排序处理)
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的百位的值
int digitOfElement = arr[j] / 100 % 10;
// 放入到对应的桶中
bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
index = 0;
// 遍历每一个桶,并将桶中的数据放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中有数据我们才放入到原数组中
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组),放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr中
arr[index++] = bucket[k][l];
}
bucketElementCounts[k] = 0;
}
}
System.out.println("第三轮对百位的排序处理 arr = " + Arrays.toString(arr));
*/
// 根据前面的推导过程,我们可以得到最终的基数排序代码
// 1. 得到数组中最大的数的位数
int max = arr[0]; // 假设第一个数就是最大的数
for (int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
// 得到最大数是几位数
int maxLength = (max + "").length();
// 这里我们使用循环将代码处理一下
for (int i = 0, n = 1; i < maxLength; i++, n*=10) {
// 针对每个元素对应的位进行排序,第一次是个位,第二次是十位,第三次是百位
for (int j = 0; j < arr.length; j++) {
// 取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
// 放入到对应的桶中
bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
int index = 0;
// 遍历每一个桶,并将桶中的数据放入到原数组
for (int k = 0; k < bucketElementCounts.length; k++) {
// 如果桶中有数据我们才放入到原数组中
if (bucketElementCounts[k] != 0) {
// 循环该桶即第k个桶(即第k个一维数组),放入
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr中
arr[index++] = bucket[k][l];
}
// 第i+1轮处理后需要将每个 bucketElementCounts[k] = 0
bucketElementCounts[k] = 0;
}
}
}
}
}