java实现基数排序

package course;

import java.util.Arrays;

public class RadixSort {
	public static void main(String[] args) {
		int[] arr = {53, 3, 542, 748, 14, 214};
		radixSort(arr);
		System.out.println("排序后:" + Arrays.toString(arr));
		
		// 测试一下基数排序的速度,给80000个数据,测试一下(46毫秒)
		// 创建一个80000个随机数据的数组
		int[] array = new int[80000];
		for (int i = 0; i < 80000; i++) {
			array[i] = (int)(Math.random() * 8000000); // 生成一个[0,8000000)的数
		}
		long date1 = System.currentTimeMillis();
		radixSort(array);
		long date2 = System.currentTimeMillis();
		System.out.println("排序用的时间是:" + (date2 - date1));
	}
	
	// 基数排序方法
	public static void radixSort(int[] arr) {
		// 定义一个二维数组,表示10个桶,每个桶就是一个一维数组
		// 说明
		// 1. 二维数组包含10个一维数组
		// 2. 为了防止在放入数的时候数据溢出,则每个一维数组(桶),大小定为arr.length
		// 3. 很明显基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		
		// 为了记录每个桶中实际存放了多少个数据,我们定一个一维数组来记录各个桶每次放入的数据个数
		// 可以这样理解
		// bucketElementCounts[0],记录的就是bucket[0]桶放入的数据的个数
		int[] bucketElementCounts = new int[10];
		
		/*
		// 第一轮(针对每个元素的个位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的个位的值
			int digitOfElement = arr[j] % 10;
			// 放入到对应的桶中
			bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
		int index = 0;
		// 遍历每一个桶,并将桶中的数据放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中有数据我们才放入到原数组中
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组),放入
				for (int l = 0; l <  bucketElementCounts[k]; l++) {
					// 取出元素放入到arr中
					arr[index++] = bucket[k][l];
				}
				// 第一轮处理后需要将每个 bucketElementCounts[k] = 0
				bucketElementCounts[k] = 0;
			}
		}
		System.out.println("第一轮对个位的排序处理 arr = " + Arrays.toString(arr));
		
		
		// 第二轮(针对每个元素的十位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的十位的值
			int digitOfElement = arr[j] / 10 % 10;
			// 放入到对应的桶中
			bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
		index = 0;
		// 遍历每一个桶,并将桶中的数据放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中有数据我们才放入到原数组中
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组),放入
				for (int l = 0; l <  bucketElementCounts[k]; l++) {
					// 取出元素放入到arr中
					arr[index++] = bucket[k][l];
				}
				bucketElementCounts[k] = 0;
			}
		}
		System.out.println("第二轮对十位的排序处理 arr = " + Arrays.toString(arr));
		
		
		// 第三轮(针对每个元素的百位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的百位的值
			int digitOfElement = arr[j] / 100 % 10;
			// 放入到对应的桶中
			bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
		index = 0;
		// 遍历每一个桶,并将桶中的数据放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中有数据我们才放入到原数组中
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组),放入
				for (int l = 0; l <  bucketElementCounts[k]; l++) {
					// 取出元素放入到arr中
					arr[index++] = bucket[k][l];
				}
				bucketElementCounts[k] = 0;
			}
		}
		System.out.println("第三轮对百位的排序处理 arr = " + Arrays.toString(arr));
		*/
		
		// 根据前面的推导过程,我们可以得到最终的基数排序代码
		// 1. 得到数组中最大的数的位数
		int max = arr[0]; // 假设第一个数就是最大的数
		for (int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		// 得到最大数是几位数
		int maxLength = (max + "").length();
		
		// 这里我们使用循环将代码处理一下
		for (int i = 0, n = 1; i < maxLength; i++, n*=10) {
			// 针对每个元素对应的位进行排序,第一次是个位,第二次是十位,第三次是百位
			for (int j = 0; j < arr.length; j++) {
				// 取出每个元素的对应位的值
				int digitOfElement = arr[j] / n % 10;
				// 放入到对应的桶中
				bucket[digitOfElement][ bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来的数组)
			int index = 0;
			// 遍历每一个桶,并将桶中的数据放入到原数组
			for (int k = 0; k < bucketElementCounts.length; k++) {
				// 如果桶中有数据我们才放入到原数组中
				if (bucketElementCounts[k] != 0) {
					// 循环该桶即第k个桶(即第k个一维数组),放入
					for (int l = 0; l <  bucketElementCounts[k]; l++) {
						// 取出元素放入到arr中
						arr[index++] = bucket[k][l];
					}
					// 第i+1轮处理后需要将每个 bucketElementCounts[k] = 0
					bucketElementCounts[k] = 0;
				}
			}
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值