tensorflow卷积层可视化的实现。基于VGG-19.

#导入包
import scipy.io
import numpy as np 
import os 
import scipy.misc 
import matplotlib.pyplot as plt 
import tensorflow as tf
#import seaborn as sns  #用来画热度图

#定义网络结构,本文用的是VGG-19
def _conv_layer(input, weights, bias):
    conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
            padding='SAME')
    return tf.nn.bias_add(conv, bias)
def _pool_layer(input):
    return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
            padding='SAME')
def preprocess(image, mean_pixel):
    return image - mean_pixel
def unprocess(image, mean_pixel):
    return image + mean_pixel
def imread(path):
    return scipy.misc.imread(path).astype(np.float)
def imsave(path, img):
    img = np.clip(img, 0, 255).astype(np.uint8)
    scipy.misc.imsave(path, img)
print ("Functions for VGG ready")

def net(data_path, input_image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4'
    )
    data = scipy.io.loadmat(data_path)
    mean = data['normalization'][0][0][0]
    mean_pixel = np.mean(mean, axis=(0, 1))
    weights = data['layers'][0]
    net = {}
    current = input_image
    for i, name in enumerate(layers):
        kind = name[:4]
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            kernels = np.transpose(kernels, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            current = _conv_layer(current, kernels, bias)
        elif kind == 'relu':
            current = tf.nn.relu(current)
        elif kind == 'pool':
            current = _pool_layer(current)
        net[name] = current
    assert len(net) == len(layers)
    return net, mean_pixel, layers
print ("Network for VGG ready")

#展示VGG-19每一层的特征图。一共有36层,就有36张特征图。
cwd  = os.getcwd()
VGG_PATH = cwd+"\\imagenet-vgg-verydeep-19.mat"   #导入数据,初始化网络。
IMG_PATH = cwd+"\\123.jpg"     #导入图片
input_image = imread(IMG_PATH)
shape = (1,input_image.shape[0],input_image.shape[1],input_image.shape[2]) 
with tf.Session() as sess:
    image = tf.placeholder('float', shape=shape)
    nets, mean_pixel, all_layers = net(VGG_PATH, image)
    input_image_pre = np.array([preprocess(input_image, mean_pixel)])
    layers = all_layers # For all layers 
   # layers = ('conv1_1', 'conv2_2','conv3_2','conv5_2')
    for i, layer in enumerate(layers):
        print ("[%d/%d] %s" % (i+1, len(layers), layer))
        features = nets[layer].eval(feed_dict={image: input_image_pre})
        
        print (" Type of 'features' is ", type(features))
        print (" Shape of 'features' is %s" % (features.shape,))
        # Plot response 
        if 1:
            plt.figure(i+1, figsize=(10, 5))
            #heatmap = sns.heatmap(features[0, :, :, 0])   #此处显示的是热度图。
            plt.matshow(features[0, :, :, 0],  fignum=i+1,cmap=plt.cm.gray)  #显示灰度图
            plt.title("" + layer)
            plt.colorbar()
            plt.show()
源码下载地址:
阅读更多
个人分类: 编程
上一篇贝叶斯算法
下一篇2018年CVPR中部分目标跟踪论文visual tracking
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭