KNN,K近邻来做图像分类

KNN来做图像分类:如下图所示,用CIFAR-10图片作为训练样本,50000张图片作为训练集,10000图片作为测试集。

KNN分类就是将测试集的像素值-训练集的像素值然后将像素值相加就得到我们的距离,距离最小的就是我们最后的分类结果。

有时候只找到距离最近的一张图片会出现误差比较大,所以我们一般找5张距离最近的图片,选区这5张图片中类别最多的种类作为我们最终的分类结果。

下图是L1距离,也叫曼哈顿距离

下图是L2距离,也叫欧式距离

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值