KNN来做图像分类:如下图所示,用CIFAR-10图片作为训练样本,50000张图片作为训练集,10000图片作为测试集。
KNN分类就是将测试集的像素值-训练集的像素值然后将像素值相加就得到我们的距离,距离最小的就是我们最后的分类结果。
有时候只找到距离最近的一张图片会出现误差比较大,所以我们一般找5张距离最近的图片,选区这5张图片中类别最多的种类作为我们最终的分类结果。
下图是L1距离,也叫曼哈顿距离
下图是L2距离,也叫欧式距离
KNN来做图像分类:如下图所示,用CIFAR-10图片作为训练样本,50000张图片作为训练集,10000图片作为测试集。
KNN分类就是将测试集的像素值-训练集的像素值然后将像素值相加就得到我们的距离,距离最小的就是我们最后的分类结果。
有时候只找到距离最近的一张图片会出现误差比较大,所以我们一般找5张距离最近的图片,选区这5张图片中类别最多的种类作为我们最终的分类结果。
下图是L1距离,也叫曼哈顿距离
下图是L2距离,也叫欧式距离