Tetrahedron(2020杭电多校)

本文探讨了直角四面体中三边长度随机选取时,交点到底面距离平方逆元的期望值计算问题。通过数学推导和C++编程实现,给出了一种有效解决此类概率问题的方法。

题意:给你直角四面体的三边a,b,c,三者两两垂直,问a,b,c从[1,n]随机挑选,求三者交点到底面的距离的平方的逆元。

直角四面体有条结论是1/(h2)=1/(a2)+1/(b2)+1/(c2);然而比赛的时候没想到怎么算期望,捂脸。

算法:E(1/h2)=E(1/a2)+E(1/b2)+E(1/c2)=3*E(1/a2)//a2,b2,c2指的是sum(a2),sum(b2),sum(c2),每个1/a2的概率都为1/n;

还有输入输出,这题卡了cin和cout

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>

#define inf 0x3f3f3f3f

using namespace std;

typedef long long ll;

const ll mod = 998244353;

const int N = 6e6 + 100;

ll arr[N];

ll quick(ll a, ll b) {
    a %= mod;
    ll ans = 1;
    while (b) {
        if (b & 1) ans = (ans * a) % mod;
        a = (a * a) % mod;
        b /= 2;
    }
    return ans;
}

void init() {
    for (ll i = 1; i <= 6e6; i++) {
        arr[i] = quick(i*i%mod,mod-2);
        arr[i] = (arr[i] + arr[i - 1])%mod;
    }
}


int main() {
    int t;
    scanf("%d", &t);
    init();
    while (t--) {
        ll n;
        scanf("%lld",&n);
        printf("%lld\n", 3 * arr[n] * quick(n, mod - 2) % mod);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值