正则项:L1与L2

文章介绍了在优化MSE损失函数时,为了防止过拟合,引入正则项的重要性。L1正则化倾向于产生稀疏解,而L2正则化则通过椭圆形状的约束避免参数过大。当损失函数加上L1正则项后,最优解更容易使某些参数为零,从而实现模型的简化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正则项

一般地,我们优化 M S E MSE MSE

l m s e = ∑ i ( y i − y ^ i ) 2 n l_{mse}=\frac{\sum_i (y_i-\hat y_i)^2}{n} lmse=ni(yiy^i)2

为了使参数尽可能小,加入正则项,防止过拟合,减小方差。L1正则可以更容易得到稀疏项。这一点可以降低参数量举个例子。例如我们的参数只有 w 1 w_1 w1 w 2 w_2 w2,那么我们的目标是让损失为0,如果损失为0,L1正则对应的是菱形,L2正则对应的是圆, M S E MSE MSE损失函数对应的是偏离原点的椭圆,是关于椭圆的平移变换。

l m s e + ∣ w 1 ∣ + ∣ w 2 ∣ = 0 l_{mse}+|w_1|+|w_2| = 0 lmse+w1+w2=0

l m s e = − ( ∣ w 1 ∣ + ∣ w 2 ∣ ) l_{mse} = - (|w_1|+|w_2|) lmse=(w1+w2)

− ( ∣ w 1 ∣ + ∣ w 2 ∣ ) - (|w_1|+|w_2|) (w1+w2)表示一个菱形,与 l m s e l_{mse} lmse的交点可以更容易使得 w 1 w_1 w1 w 2 w_2 w2为0,得到稀疏性。

注:上述这一部分可以参考西瓜书253页

参考资料

https://blog.csdn.net/jinping_shi/article/details/52433975 (感觉讲的不错)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值