需求
实际程序中,往往需要将运算结果(ndarray类型)保存到本地,以便进行后续的数据分析。利用numpy.savetxt可以保存1维或2维数据到txt文件中,但无法保存3维以上的数据。比如对一个图像库提取的图像特征。
此时可以用numpy.savez方法来保存3维以上的数据。
接口
保存数据用numpy.savez
可以保存任意多个N维数组,有两种保存方式:
1.用*args方式,比如np.savez('data',d1,d2,d3),它将会以以arr_0,arr_1,arr_2来表示d1,d2,d3的名字,用于访问数据时用。
2.用**kwds方式,比如np.savez('data',d1=d1,d2=d2,d3=d3),即指定了数组名,用于访问数据时用。
保存后的本地文件为npz格式。
需要载入数据时用np.load(file)方法载入后的对象为NpzFile对象,类似一个字典。可以通过NpzFile.files来查看该文件中,有哪些数据。进而再通过类似字典索引的方式来访问数据,详情见实例。
Signature: np.savez(file, *args, **kwds)
Docstring:
Save several arrays into a single file in uncompressed ``.npz`` format.
If arguments are passed in with no keywords, the corresponding variable
names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword
arguments are given, the corresponding variable names, in the ``.npz``
file will match the keyword names.
Parameters
----------
file : str or file
Either the file name (string) or an open file (file-like object)
where the data will be saved. If file is a string or a Path, the
``.npz`` extension will be appended to the file name if it is not
already there.
args : Arguments, optional
Arrays to save to the file. Since it is not possible for Python to
know the names of the arrays outside `savez`, the arrays will be saved
with names "arr_0", "arr_1", and so on. These arguments can be any
expression.
kwds : Keyword arguments, optional
Arrays to save to the file. Arrays will be saved in the file with the
keyword names.
实例
实例1:用*args方式保存数据
In [48]: d1 = np.random.randint(0,100,(2,2,2))
In [49]: d1
Out[49]:
array([[[12, 72],
[60, 41]],
[[ 2, 6],
[62, 53]]])
In [50]: d2, d3 = d1*10, d1*100
In [51]: np.savez('data',d1,d2,d3)
In [52]: data = np.load('data.npz')
In [53]: data.files
Out[53]: ['arr_0', 'arr_1', 'arr_2']
In [54]: data['arr_0']
Out[54]:
array([[[12, 72],
[60, 41]],
[[ 2, 6],
[62, 53]]])
In [55]: data['arr_1']
Out[55]:
array([[[120, 720],
[600, 410]],
[[ 20, 60],
[620, 530]]])
In [56]: data['arr_2']
Out[56]:
array([[[1200, 7200],
[6000, 4100]],
[[ 200, 600],
[6200, 5300]]])
实例2:用**kwds方式保存数据
In [57]: np.savez('data2',d1=d1,d2=d2,d3=d3) # 等价于
# d = {'d1':d1,'d2':d2,'d3':d3}
# np.savez('data2',**d)
In [58]: data2 = np.load('data2.npz')
In [59]: data2.files
Out[59]: ['d1', 'd2', 'd3']
In [62]: data2['d1']
Out[62]:
array([[[12, 72],
[60, 41]],
[[ 2, 6],
[62, 53]]])
In [63]: data2['d2']
Out[63]:
array([[[120, 720],
[600, 410]],
[[ 20, 60],
[620, 530]]])
In [64]: data2['d3']
Out[64]:
array([[[1200, 7200],
[6000, 4100]],
[[ 200, 600],
[6200, 5300]]])
————————————————
版权声明:本文为CSDN博主「一从际发」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kaever/article/details/106472316