- 博客(641)
- 资源 (26)
- 论坛 (36)
- 收藏
- 关注

原创 文章部分目录:深度学习基础、目标检测、人体位姿估计、行人重识别、自然语言处理、相似性搜索和向量聚类
目标检测、人体位姿估计、行人重识别flyfish目标检测目标检测 SSD: Single Shot MultiBox Detector - 综述目标检测 SSD: Single Shot MultiBox Detector - 目标的坐标表示方法目标检测 SSD: Single Shot MultiBox Detector - 全连接层是如何转到卷积层的?或者说如何将全连接层重新参数化为...
2020-04-10 19:00:07
968

原创 深度学习基础 - 交叉熵
自信息:是一个事件或者消息本身所包含的信息量信息熵:其他名字 平均自信息,事件集所包含的平均信息量关于 解答 交叉熵 是什么,为什么的问题,香农出场大家好,我是香农,我就是发明信息论的男人,大家可以阅读我在1948年发的论文《通信的数学原理》英文是《A Mathematical Theory of Communication》,因为我写的论文阅读对象是大众,所以非常通俗易读。如果读不懂,自...
2019-12-16 19:15:18
452
1
原创 Quarkdet 统计COCO格式数据集的各个类别图片的数量和标注框的数量
Quarkdet 统计COCO格式数据集的各个类别图片的数量和标注框的数量flyfish了解数据的方式之一是统计标注框的数量先说明其他代码统计存在的错误之处,再放置一段正确的统计方式。源码地址具体在tools/statistics.py其他地方代码的错误之处在 catId = coco.getCatIds(catNms=cat_name)这句,这样会导致重复统计错误例如car 和 carrotear 和 teddy beardog 和 hot dog两个单词之间存在包含关系,后者包括
2021-01-20 21:03:47
32
1
原创 PyTorch实现轻量级目标检测 quarkdet
PyTorch实现轻量级目标检测 quarkdetflyfishlightweight object detectionquarkdet可以用使用以下方式EfficientNet + BiFPN + GFLGhostNet + PAN + GFLGhostNet + BiFPN + GFLMobileNetV3 + PAN + GFLv2等等训练时将命令行换成不同的配置文件即可,配置文件在quarkdet/config文件夹中关于EfficientDet原版实现是EfficientNet
2021-01-07 19:47:22
237
原创 torch.utils.data.DataLoader中参数collate_fn的作用
import torchimport torch.nn.functional as Fimport numpy as npfrom torch.utils.data import Datasetclass CustomDataset(Dataset): def __init__(self, x, y): self.x = x self.y = y def __getitem__(self, idx): return self.x[i
2020-12-18 19:17:41
81
原创 深度学习目标检测框架的编写 - 注册机制
深度学习目标检测框架的编写 - 注册机制flyfish增加一个模块时,符合开闭原则。对扩展开放,对修改关闭,原代码保持不变,只关注新增模块。一、前置知识1. 修饰器一个关注函数计算,一个关注输出def pretty_sum_a_b(func): def inner(a, b): print(str(a) + " + " + str(b) + " = ", end="") return func(a, b) return inner#synt
2020-12-11 19:46:34
64
原创 目标检测 - Neck的设计 PAN(Path Aggregation Network)
PAN(Path Aggregation Network)目标检测器的构成1. Input:Image,Patches,ImagePyramid2. Backbones:VGG16,ResNet(ResNet-18、ResNet-34、ResNet-50、ResNet-101、ResNet-152),SpineNet,EfficientNet-B0/B7,CSPResNeXt50,CSPDarknet53,MobileNet(v1、v2、v3),ShuffleNet(v1、v2)3. Neck:
2020-12-03 19:35:47
265
原创 目标检测 - Generalized Focal Loss的Anchor处理机制
目标检测 - Generalized Focal Loss的Anchor处理机制flyfish分析的代码采用的是RangiLyu的nanodet,nanodet提供了轻量级模型从训练到Android端安装部署的整体解决方案源码地址代码所在路径是nanodet/nanodet/model/head/gfl_head.py一、基础配置octave_base_scale: 5scales_per_octave: 1strides: [8, 16, 32]batchsize_per_gpu: 2
2020-11-27 20:38:35
280
2
原创 目标检测 - Generalized Focal Loss 基于one-stage检测器无cost涨点 (改进的Focal Loss,优于RetinaNet,FCOS,ATSS等)
目标检测 - Generalized Focal Loss什么问题FCOS v1FCOS v2作者发现的问题改进def quality_focal_loss(pred, target, beta=2.0): r"""Quality Focal Loss (QFL) is from `Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detec
2020-11-26 18:47:32
291
1
原创 目标检测 - IoU和GIoU作为边框回归的损失和代码实现
inputinputinput: Predicted BpB^pBp and ground truth BgB^gBg bounding box coordinates:Bp=(x1p,y1p,x2p,y2p)B^p = (x^p_1,y^p_1,x^p_2,y^p_2)Bp=(x1p,y1p,x2p,y2p), Bg=(x1g,y1g,x2g,y2g)B^g = (x^g_1,y^g_1,x^g_2,y^g_2)Bg=(x1g,y1g,x2g,y2g)outputoutputoutpu
2020-11-24 20:40:22
176
原创 目标检测 FCOS(FCOS: Fully Convolutional One-Stage Object Detection)
FCOS(FCOS: Fully Convolutional One-Stage Object Detection)Anchor-based的模式有两个超参数 aspect ratio 和scale来生成 anchor boxFCOS 不用生成anchor box,该算法是一种基于FCN的逐像素目标检测算法,实现了无锚点(anchor-free)、无提议(proposal free)的解决方案,并且提出了中心度(Center-ness)的思想论文名称:FCOS:Fully Convolutiona
2020-11-20 19:52:03
224
原创 目标检测 PAA 概率anchor分配算法(Probabilistic Anchor Assignment Algorithm)
目标检测 PAA 概率anchor分配算法(Probabilistic Anchor Assignment Algorithm)论文:Probabilistic Anchor Assignment with IoU Prediction for Object Detection 简称PAA代码:https://github.com/kkhoot/PAA论文地址:https://arxiv.org/abs/2007.08103收获focal loss缓解了正负样本的不平衡问题。FPN提供了ima
2020-11-16 19:36:02
231
原创 目标检测 PAA - 高斯混合模型(GMM)和期望最大化算法(EM algorithm)
Probabilistic Anchor Assignment with IoUPrediction for Object DetectionGiven a set of anchor scores, the likelihood of this GMMcan be optimized using Expectation-Maximization (EM) algorithm.有一个数据集 一半数据来自高斯分布A,一半数据来自高斯分布B,两种数据的来源都是不同的高斯分布随机生成的,能够描述这个数据集
2020-11-12 20:42:33
151
原创 大佬带队!旷视研究院 CV Master训练营-《RetinaNet进阶和第一次作业解答》
大佬带队!旷视研究院 CV Master训练营-《RetinaNet进阶和第一次作业解答》邵盛松 笔记介绍王枫老师,旷视研究院检测组算法研究员,曾在文字检测著名赛事ICDAR中ArT检测任务中担任主力带队获得冠军。天元官网MegEngine GitHub天元官网MegEngine GitHub课程大纲FreeAnchor原理FreeAnchor代码实现Q&AFreeAnchor: Learning to Match Anchors for VisualObject Detec
2020-11-02 20:43:29
231
1
原创 以股票数据为例使用神经网络预测时间序列数据
以股票数据为例使用神经网络预测时间序列数据flyfish源代码地址整个框架分为以下几个模块dataset,model,config,trainner,evaluator,utils等数据预处理将数据按照时间排序 datetime code open close ... low vol amount p_change0 2010-01-05 300 3545.19 3564.04 ... 3497.66 858096 1.
2020-10-27 18:20:51
256
1
原创 大佬带队!旷视研究院 CV Master训练营-《 一阶段检测器RetinaNet 详解与实践》
大佬带队!旷视研究院 CV Master训练营-《 一阶段检测器RetinaNet 详解与实践》邵盛松 笔记介绍王枫老师,旷视研究院检测组算法研究员,曾在文字检测著名赛事ICDAR中ArT检测任务中担任主力带队获得冠军。天元官网MegEngine GitHub作业地址RetinaNet对应的论文Focal Loss for Dense Object Detection作者:Tsung-Yi LinPriya GoyalRoss GirshickKaiming HePiotr Doll ́ar
2020-10-26 21:21:49
466
3
原创 pandas和numpy随机生成一张表格数据,包含生成日期,合并列,设置列标题,写入文件,使用matplotlib可视化等
pandas和numpy随机生成一张表格数据,包含生成日期,合并列,设置列标题,写入文件,使用matplotlib可视化等我们生成的数据具有以下列主键ID,时间,数值,其余的是特征object_id,year_month_day,value,feature_1,feature_2,feature_3变成object_id,year_month_day,value,feature_1,feature_2,feature_3,feature_month,feature_day实现代码如下imp
2020-10-24 20:47:31
130
原创 大佬带队!旷视研究院 CV Master训练营-《目标检测任务综述》总结
大佬带队!旷视研究院 CV Master训练营-《目标检测任务综述》总结邵盛松 笔记介绍黎泽明老师,旷视研究院基础检测组负责人,硕士毕业于清华大学。在CVPR,ICCV,ECCV,NeurIPS,AAAI等会议上发表论文十余篇。曾在物体检测的著名挑战赛COCO上作为主力取得了3连冠,并获得比赛的最佳论文奖,在CVPR19的DIW挑战赛中担任评审委员。研究兴趣主要集中在物体检测和高效的模型设计, 并在旷视主导研发了检测的代码仓库。提纲 outlines基于DNN的通过物体检测简介经典物体检测结构
2020-10-19 20:27:51
442
原创 深度学习基础 - 前向传播和反向传播
前向传播和反向传播从一个简单的数学表达式开始1+2=31+2=31+2=3把常量换成变量,如下x+y=zx+y=zx+y=z这是数学表达式的方式我们再换种计算图的方式,如下前向传播反向传播这是加法,左边是前向传播,右边是反向传播这是乘法,左边是前向传播,右边是反向传播代码实现class multiplication_layer: def __init__(self): self.x = None self.y = None de
2020-10-10 19:41:39
312
1
原创 PyTorch - torchvision.transforms.Compose 几个图像变换组合在一起
PyTorch - torchvision.transforms.Compose 几个图像变换组合在一起flyfishtransforms是常见的图像变换torchvision.transforms.Compose是将几个变换组合在一起原始图片经过变换的图片代码如下import numpy as npimport cv2import osimport torchimport mathimport torchvision.transforms as transformsfrom
2020-09-28 19:19:03
354
1
原创 PyTorch - transforms.ColorJitter 改变图像的属性:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)
PyTorch - transforms.ColorJitter 改变图像的属性:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)flyfishjitter的意思v. 紧张不安 / 抖动 / 战战兢兢 / 神经过敏n. 紧张不安 / 晃动 / 偏移 / 振动这里抖动或者偏移 是随机变化的含义下面以亮度brightness举例,假设brightness设置为0.5brightness_change = transforms.ColorJit
2020-09-28 19:18:14
2978
原创 深度学习的基础 - 导数是什么 - 微分是什么 - 导数和微分有什么区别 - 微分解决什么问题
导数和微分有什么区别答案在如下一副图中导数和微分 在不同时期有不同的定义三种微积分牛顿和莱布尼茨时代的微积分称之为古典微积分柯西和维尔斯特拉斯时代的微分称为极限微积分20世纪60年代鲁滨逊时期的微积分在非标准分析中。教科书高等数学用的是极限微积分。古典微积分是上存在bug的,而且是引发第二次数学危机的问题。我们先从严谨的极限微积分说起,在反过来说古典微积分的问题出在什么地方。关于导数和微分这两种微积分中是谁是基础的问题在极限微积分中先有极限再有导数后有微分。先有导数再有切线。数列-》极
2020-09-18 19:48:17
153
原创 一文看不懂方差和标准差
标准差和方差测量狗的高度(毫米)高度(在肩部)为:600mm,470mm,170mm,430mm和300mm。找出均值(Mean),方差(Variance)和标准偏差((Standard Deviation)。mean在就是average的意思表示平均水平第一步是找到均值: Mean =600+470+170+430+3005=19705=394\begin{aligned}\text { Mean } &=\frac{600+470+170+430+300}{5
2020-09-11 19:41:01
418
原创 入自然语言处理的门实践中文版的情感分析
入自然语言处理的门实践中文版的情感分析flyfish需要训练的数据集我们现有的数据集是weibo_senti_100k 10 万多条,带情感标注 新浪微博,正负向评论约各 5 万条。数据格式如下下载地址是https://github.com/SophonPlus/ChineseNlpCorpus我们通过huggingface中的使用方法使用微博数据集对模型bert-base-chinese进行微调。原数据集格式参考下载glue_data.zip(可以不下载,只是用来做我们自己数据集的
2020-09-09 19:29:11
226
原创 入自然语言处理的门实现两个句子在语义上是否相同
入自然语言处理的门实现两个句子在语义上是否相同flyfish一个使用模型进行序列分类的示例,以确定两个序列是否互为转述或者解释。代码实现from transformers import AutoTokenizer, AutoModelForSequenceClassificationimport torchtokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")model = AutoModelFo
2020-09-08 19:04:33
167
原创 入自然语言处理的门实现命名实体识别
入自然语言处理的门实现命名实体识别flyfish为文本中的每个词汇赋予一个词性的过程叫命名实体识别(Named Entity Recognition) 简称NER代码实现from transformers import pipelinetoken = pipeline('ner', model="vblagoje/bert-english-uncased-finetuned-pos")print(token("My name is Santiago and I live in JiNan.")
2020-09-08 18:59:29
172
原创 入自然语言处理的门中在本地使用huggingface的模型
入自然语言处理的门中在本地使用huggingface的模型flyfish模型下载地址在此文章中我们想实现这样的一个功能,看图巴黎是[MASK]国的首都。我们需要模型自动填空。本地加载模型from transformers import pipelinepath="/media/huggingface/bert-base-chinese/"unmasker = pipeline('fill-mask', model=path)print(unmasker("巴黎是[MASK]国的首都。")
2020-09-07 18:45:32
203
原创 入自然语言处理的门以huggingface的transformers方式
以huggingface的transformers方式入自然语言处理的门flyfish目的最好有个示例,给我代码和模型,一行代码也不写,只一行命令执行看结果,到底是个什么样子,然后再分析。文本就实现了,模型下载有困难?文末网盘伺候,包含TensorFlow和 PyTorch的模型,有的示例需要使用数据集,网盘里也有,免的到处找,提供模型很多慢慢下载。如果您想要以下功能1、文本生成我说一句话,程序自动补充下一句或者自动生成一大段话。2、填空一句话,少了词,程序自动补上。3、文本分类哪些文
2020-09-04 20:35:17
357
原创 Faiss 相似度搜索使用余弦相似性
Faiss 相似度搜索使用余弦相似性flyfishFaiss提供了faiss.METRIC_INNER_PRODUCT 和faiss.METRIC_L2只需要我们代码加上normalize_L2IndexIVFFlat在参数选择时,使用faiss.METRIC_INNER_PRODUCT为了验证正确性,我们先使用其他方法实现1 使用numpy实现def cosine_similarity_custom1(x, y): x_y = np.dot(x, y.transpose())
2020-08-14 19:22:02
655
原创 Faiss 如何选择索引
Faiss 如何选择索引flyfish问题一:是否需要精确结果?如果是,那么应该使用 “Flat”能保证精确结果的只有 IndexFlatL2 或 IndexFlatIP(Inner Product). 它们作为其他索引的基线结果.问题二:是否关心内存?请记住,所有Faiss索引都存储在RAM中。 以下内容认为,如果不需要精确的结果,则RAM是限制因素,并且在内存限制内,我们优化了精度与速度之间的权衡。如果不在乎内存,那么应该使用 “HNSWx”如果你的内存很大,或数据集很小,那么 HNSW
2020-08-11 19:50:53
162
原创 Faiss的第三个示例 -IVFPQ
Faiss的第三个示例 -IVFPQflyfishimport mklmkl.get_max_threads()import numpy as npd = 64 # dimensionnb = 100000 # database sizenq = 10000 # nb of queriesnp.random.seed(1234)
2020-08-11 19:47:20
194
原创 Faiss的第二个示例 IVFFlat
Faiss的第二个示例 IVFFlatimport mklmkl.get_max_threads()import numpy as npd = 64 # dimensionnb = 100000 # database sizenq = 10000 # nb of queriesnp.random.seed(1234) # make r
2020-08-11 19:47:04
153
原创 Faiss的第一个示例 Flat
Faiss的第一个示例 Flatflyfish代码分析将数据的维度变小,代码量变小以便分析import mklmkl.get_max_threads()import numpy as npd = 3# # dimensionnb = 10# # database sizenq = 2# # nb of queriesnp.random.seed(1234)
2020-08-10 18:10:10
74
原创 Faiss介绍和环境搭建
Faiss介绍和环境搭建flyfishFaiss是用于高效相似性搜索和密集向量聚类的库。 它包含的算法可搜索任意大小的向量集,最多可搜索到不适合RAM的向量。 它还包含用于评估和参数调整的支持代码。 Faiss用C ++编写,带有完整的Python包装(版本2和3)。 一些最有用的算法是在GPU上实现的。 它是由Facebook AI Research开发的。说明Faiss包含几种相似性搜索方法。假定实例表示为向量,并由整数标识,并且可以将向量与L2(欧几里得)距离或点积进行比较。 与查询向量相似
2020-08-10 18:09:10
154
原创 IMDB-WIKI人脸数据集说明
IMDB-WIKI人脸数据集说明flyfish数据来源两个地方 IMDb和WikipediaIMDb介绍IMDb全称是互联网电影资料库(Internet Movie Database)是一个关于电影演员、电影、电视节目、电视明星和电影制作的在线数据库。数据集中总共有523,051张面部图像,其中从IMDB的20,284名名人和维基百科的62,328名名人获得了460,723张面部图像。关于两个网站的数据集处理一、www.imdb.com我们获取了IMDB网站(www.imdb.com)上最出
2020-07-17 19:53:28
275
原创 PyTorch - torch.nn.PReLU
PyTorch - torch.nn.PReLUflyfishPReLU是Parametric ReLU示例1import torchimport torch.nn as nninput = torch.arange(0, 12).view(1,3,2,2).float()input = torch.randn(1,3,2,2)print(input)m = nn.PReLU(3)output = m(input)print(output)计算过程数学表达式:PReLU(x)=
2020-06-09 19:23:25
1475
原创 PyTorch - BatchNorm2d
PyTorch - BatchNorm2dflyfish术语问题在《深入浅出PyTorch》这本书中翻译成归一化在花书《深度学习》书中翻译成标准化在《深度学习之美》书中翻译成规范化在《动手学深度学习》书中翻译成归一化在《深度学习卷积神经网络从入门到精通》书中翻译成归一化归一化,因为带了一字,容易被理解成将数据映射到[0,1], 而标准化有把数据映射到一个合理的分布的意思,翻译的不统一,容易造成讨论的概念不一致,可以参考特征缩放(Feature_scaling)我这里采用了 标准化 的翻译
2020-06-08 20:23:17
336
原创 PyTorch - torch.nn.Upsample
PyTorch - torch.nn.Upsampleflyfish上采样输入是minibatch x channels x height x width输出是H × scale_factorW × scale_factor本来名字是上采样,还可以根据参数使用变成下采样与torch.nn.functional.interpolate对比torch.nn.functional.interpolate完全可以替代该函数import torchimport torch.nn as nn
2020-06-02 19:28:13
438
原创 PyTorch - torch.nn.AdaptiveAvgPool2d
PyTorch - torch.nn.AdaptiveAvgPool2d自适应平均池化torch.nn.AdaptiveAvgPool2d 对应的是torch.nn.functional.adaptive_avg_pool2d输出数据相当于 minibatch x channels x height x widthimport torchimport torch.nn as nninput = torch.arange(0, 16).view(1,1,4,4).float()# tensor(
2020-06-02 19:18:38
636
Deep SORT 论文实现中需要使用的目标跟踪模型 mars-small128
2019-05-09
C++ 开发SOAP服务端和SOAP客户端
2012-05-14
List Control 可编辑任意item文本,设置行高
2010-11-22
grpc编译安装所需文件
2018-07-31
Agg在Windows下的编译 字符集 Unicode
2017-12-27
一个曾经商业化的MFC library Ultimate Grid 现在免费提供
2017-10-17
TensorFlow inception-2015-12-05.tgz
2017-09-18
flyfish1986的留言板
发表于 2020-01-02 最后回复 2020-01-02
在List Control中如何让单元格显示多行字符,并且可以编辑?
发表于 2009-09-16 最后回复 2016-09-23
Ultimate Grid 问题
发表于 2009-11-11 最后回复 2016-07-13
求助高手QueryPerformanceFrequency为什么精确
发表于 2012-05-05 最后回复 2014-07-21
在mfc中一个线程如何等待所有的线程结束?
发表于 2010-02-26 最后回复 2012-11-13
vc对话框显示word文档问题
发表于 2010-06-09 最后回复 2012-07-05
模态对话框焦点与刷屏问题
发表于 2010-05-22 最后回复 2010-12-08
如何将将一个字符串转换为CTime或者是COleDateTime
发表于 2010-10-11 最后回复 2010-10-12
如何实现一个编辑html的工具栏
发表于 2010-08-25 最后回复 2010-09-11
关于在电脑上发短信到手机是怎么实现?
发表于 2010-07-30 最后回复 2010-08-25
在Dialog中画线的问题
发表于 2010-08-21 最后回复 2010-08-21
邮件的发送状态问题
发表于 2010-08-13 最后回复 2010-08-15
List control删除Item问题
发表于 2010-08-12 最后回复 2010-08-13
寻求类似FoxMail源码一份
发表于 2010-08-04 最后回复 2010-08-08
关于等待窗口的问题
发表于 2010-07-25 最后回复 2010-07-25
List Control 自绘行高问题
发表于 2010-07-12 最后回复 2010-07-13
使用全局钩子获取WORD关闭消息问题
发表于 2010-07-01 最后回复 2010-07-12
VC/MFC中如何获取外部的Word关闭事件
发表于 2010-04-30 最后回复 2010-06-11
Vc中使用webbrowser控件问题
发表于 2010-06-07 最后回复 2010-06-08
vc中 Edit控件 SQL匹配字符问题
发表于 2010-06-01 最后回复 2010-06-01
如何在EditBox中如何处理SQL中的特殊,需要详细说明
发表于 2010-06-01 最后回复 2010-06-01
如何实现tree control 中子节点与父节点对齐 ?
发表于 2010-05-26 最后回复 2010-05-27
VC实现一个自定义的列表
发表于 2010-05-05 最后回复 2010-05-13
在VC 中使用ADO操作数据库,如何更新表中的数据类型为blob(binary)的字段.
发表于 2009-08-27 最后回复 2009-11-27
滚动条问题
发表于 2009-11-13 最后回复 2009-11-20
在窗体中动态增加控件,当控件增加足够多的时候,出现垂直滚动条。这样的功能如何实现?
发表于 2009-11-12 最后回复 2009-11-12
如何实现单击滚动条的向下箭头按钮,原来一次移动一行字符更改为一次移动半行字符
发表于 2009-11-11 最后回复 2009-11-12
如何在其他类中控制窗口对象?
发表于 2009-09-29 最后回复 2009-10-02
GridCtrl单元格输入多行字符问题
发表于 2009-09-18 最后回复 2009-09-22
多客户端连接数据库,如果一个客户端向表中添加一条数据,如果通知其他客户端?
发表于 2009-08-08 最后回复 2009-08-10
一个庞大的项目,没有文档,为后续开发各位有什么建议?
发表于 2009-02-03 最后回复 2009-02-05
腾讯是如何支持庞大的用户群的登录?
发表于 2009-01-31 最后回复 2009-02-02
MFC ODBC 数据库异常操作
发表于 2008-11-27 最后回复 2008-12-02
WSAAsyncSelect模型
发表于 2008-11-07 最后回复 2008-11-07
关于定时器,马上执行的问题
发表于 2008-10-11 最后回复 2008-10-16
帮忙解释一下代码(在基类中声明虚类,及在基类的静态函数中创建派生类对象)
发表于 2008-10-08 最后回复 2008-10-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝