记录——全矩阵捕捉(FMC)/全聚焦方法(TFM)

本文介绍全矩阵捕捉(FMC)与全聚焦方法(TFM)在超声阵列后处理技术中的应用。FMC是一种收集相控阵数据的技术,无需预知待检件的详细信息,通过逐个激活阵列中的每个元素并记录所有接收信号,形成信号矩阵供后续处理。TFM则是利用FMC数据对感兴趣区域进行全聚焦成像,提高图像分辨率和缺陷定位精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全矩阵捕捉(FMC)怎样运作 ?

全聚焦方法(TFM)是一种超声阵列后处理技术,用于全聚焦在感兴趣的区域的每个点。

第一步: 采集全矩阵捕捉 (FMC)数据

全矩阵捕捉(FMC)是收集相控阵数据的另一种方法
这项技术不需要任何待检查件的知识(也不需要形状,也不需要速度)
每个元素都是逐个激活(镜头)
记录接收中的所有元素,因此存储信号矩阵以便进行处理
在这里插入图片描述

第二步: 重建:全聚焦方式 (TFM)
在这里插入图片描述
转自:https://www.m2m-ndt.com/zh/technology-2/pa-techniques/total-tfm/

聚焦成像是利用多视图或空间频率信息来恢复深度图像的计算机视觉技术。在MATLAB中,实现聚焦成像算法通常涉及到以下几个步骤: 1. **数据采集**:多视角图像序列或者使用特殊的硬件设备(如光场相机)获取包含空间信息的数据。 2. **图像处理**: - **图像校准**:对不同视角的图像进行畸变校正和对齐,确保它们在空间上是连续的。 - **特征提取**:识别和匹配图像中的对应点,这对于计算深度很重要。 - **空间频率分析**:通过傅里叶变换分析图像的频率域特征,如相位或梯度幅值。 3. **深度计算**: - **卷积算子**:利用如Hartley或Tomasi的公式,基于视差估计每个像素的深度。 - **复数域运算**:有时在复数域中处理频率信息能更方便地计算深度。 4. **反滤波**:应用去噪和反滤波技术来改善深度图的质量,减少噪声。 5. **后处理**: - **深度平滑**:使用滑动窗口或滤波器进行平滑处理,提高深度图的连续性和细节。 - **深度裁剪**:限制深度在合理的范围内,防止产生负深度或无穷大。 在MATLAB中,相关的库函数可能包括`imregtform`(图像几何变换)、`fft2`和`ifft2`(快速傅立叶变换)、`imgaussfilt`(高斯滤波)等。具体的实现细节会依赖于算法的复杂性和应用场景。 如果你想要深入了解或实践这个算法,可以考虑查阅MATLAB的Image Processing Toolbox文档,或者搜索相关的教程、研究论文和代码示例。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值