最大子段和问题详解(51Nod - DP动态规划基础)

N个整数组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。

例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。

输入

   第1行:整数序列的长度N(2 <= N <= 50000)
   第2 - N + 1行:N个整数(-10^9 <= A[i] <= 10^9)

 

输出

         输出最大字段和

输入示例

 

6
-2
11
-4
13
-5
-2


输出示例

 

20

看见这个问题你的第一反应是用什么算法? 

(1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦。好的,时间复杂度?


(1.1)枚举i,O(n)
(1.2)枚举j,O(n)
(1.3)求和a[i..j],O(n)

大概是这样一个计算方法:

for(int i = 1; i <= n; i++)
{
    for(int j = i; j <= n; j++)
    {
        int sum = 0;
        for(int k = i; k <= j; k++)
            sum += a[k];
            
        max = Max(max, sum);
    }
}

 

所以是O(n^3), 复杂度太高?降低一下试试看?

(2) 仍然是枚举! 能不能在枚举的同时计算和?
(2.1)枚举i,O(n)
(2. 2)枚举j,O(n) ,这里我们发现a[i..j]的和不是a[i..j – 1]的和加上a[j]么?所以我们在这里当j增加1的时候把a[j]加到之前的结果上不就可以了么?对!所以我们毫不费力地降低了复杂度,得到了一个新地时间复杂度为O(n^2)的更快的算法。

代码如下:

#include<bits/stdc++.h>
using namespace std;
int a[50002];

int main()
{
	int n;
	long long Max=a[1];
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)
	{
		long long sum=0;
		for(int j=i;j<=n;j++)
		{
			sum+=a[j];
			Max=max(Max,sum);
		}
	}
	if(Max>0)
		printf("%lld\n",Max);
	else 
		printf("0\n");
	return 0;
}

是不是到极限了?远远不止!


(3)分治一下?


我们从中间切开数组,原数组的最大子段和要么是两个子数组的最大子段和(分), 要么是跨越中心分界点的最大子段和(合)。 那么跨越中心分界点的最大子段合怎么计算呢?仍然是枚举! 从中心点往左边找到走到哪里可以得到最大的合,再从中心点往右边检查走到哪里可以得到最大的子段合,加起来就可以了。可见原来问题之所以难,是因为我们不知道子数组从哪里开始,哪里结束,没有“着力点”,有了中心位置这个“着力点”,我们可以很轻松地通过循环线性时间找到最大子段和。


于是算法变成了


(3.1)拆分子数组分别求长度近乎一半的数组的最大子段和sum1, sum2


时间复杂度 2* T(n / 2)


(3.2)从中心点往两边分别分别找到最大的和,找到跨越中心分界点的最大子段和sum3 时间复杂度 O(n)


那么总体时间复杂度是T(n) = 2 * T(n / 2) + O(n) = O(nlogn), 又优化了一大步,不是吗?

AC代码如下:

#include<bits/stdc++.h>
typedef long long ll;
int a[100005];
ll maxsub(ll left,ll right)
{
	int center=(left+right)/2;
	if(left==right)
	{
		if(a[left]>0)	return a[left];
		else return 0;
	}
	else
	{
		ll left_sum,right_sum;
		left_sum=maxsub(left,center);
		right_sum=maxsub(center+1,right);
		ll sum=0;
		ll max=0;
		ll right_max=0,left_max=0;
		for(int i=center;i>=left;i--)
		{
			sum+=a[i];
			if(left_max<sum)	left_max=sum;
		}
		sum=0;
		for(int i=center+1;i<=right;i++)
		{
			sum+=a[i];
			if(right_max<sum)	right_max=sum;
		}
		max=right_max+left_max;
		if(max<left_sum)	max=left_sum;
		if(max<right_sum)	max=right_sum;
		return max;
	}
}

int main()
{
	int n;
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%d",&a[i]);
	printf("%lld\n",maxsub(0,n-1));
}

还能优化吗?再想想,别放弃!

 

我们在解法(3)里需要一个“着力点”达到O(n)的子问题时间复杂度,又在解法(2)里轻易地用之前的和加上一个新的元素得到现在的和,那么“之前的和”有那么重要么?如果之前的和是负数呢?显然没用了吧?我们要一段负数的和,还不如从当前元素重新开始了吧?


再想想,如果我要选择a[j],那么“之前的和”一定是最大的并且是正的。不然要么我把“之前的和”换成更优,要么我直接从a[j]开始,不是更好么?


动态规划大显身手。我们记录dp[i]表示以a[i]结尾的全部子段中最大的和。我们看一下刚才想到的,我取不取a[i – 1],如果取a[i – 1]则一定是取以a[i – 1]结尾的子段和中最大的一个,所以是dp[i – 1]。 那如果不取dp[i – 1]呢?那么我就只取a[i]孤零零一个好了。注意dp[i]的定义要么一定取a[i]。 那么我要么取a[i – 1]要么不取a[i -1]。 那么那种情况对dp[i]有利? 显然取最大的嘛。所以我们有dp[i] = max(dp[i – 1] + a[i], a[i]) 其实它和dp[i] = max(dp[i – 1] , 0) + a[i]是一样的,意思是说之前能取到的最大和是正的我就要,否则我就不要!初值是什么?初值是dp[1] = a[1],因为前面没的选了。


那么结果是什么?我们要取的最大子段和必然以某个a[i]结尾吧?那么结果就是max(dp[i])了。


这样,我们的时间复杂度是O(n),空间复杂度也是O(n)——因为要记录dp这个数组。

#include<bits/stdc++.h>
#include<cstring>
using namespace std;
typedef long long ll;
ll a[100005];
ll dp[100005];

int main()
{
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%lld",&a[i]);
	memset(dp,0,sizeof(dp));
	dp[1]=a[1];
	int MAX=1;
	for(int i=2;i<=n;i++)
	{
		dp[i]=max(dp[i-1],(long long)0)+a[i];
		if(dp[i]>dp[MAX])	MAX=i;
	}
	printf("%lld\n",dp[MAX]);
}

算法达到最优了吗? 好像是!还可以优化!我们注意到dp[i] = max(dp[i - 1], 0) + a[i], 看它只和dp[i – 1]有关,我们为什么要把它全记录下来呢?为了求所有dp[i]的最大值?不,最大值我们也可以求一个比较一个嘛。


我们定义endmax表示以当前元素结尾的最大子段和,当加入a[i]时,我们有endmax’ = max(endmax, 0) + a[i], 然后再顺便记录一下最大值就好了。

 

伪代码如下;(数组下标从1开始)

endmax = answer = a[1]
for i = 2 to n do
    endmax = max(endmax, 0) + a[i]
    answer = max(answer, endmax)
endfor

时间复杂度?O(n)!空间复杂度?O(1)! 简单吧?我们不仅优化了时间复杂度和空间复杂度,还使代码变得简单明了,更不容易出错。


老生常谈的问题来了。我们如何找到一个这样的子段?请看上面的为伪代码endmax = max(endmax, 0) + a[i], 对于endmax它对应的子段的结尾显然是a[i],我们怎么知道这个子段的开头呢? 就看它有没有被更新。也就是说如果endmax’ = endmax + a[i]则对应子段的开头就是之前的子段的开头。否则,显然endmax开头和结尾都是a[i]了,让我们来改一下伪代码:

start = 1
answerstart = asnwerend = 1
endmax = answer = a[1]
for end = 2 to n do
	if endmax > 0 then
		endmax += a[end]
	else
		endmax = a[end]
		start = end
	endif
	if endmax > answer then
		answer = endmax
		answerstart = start
		answerend = end
	endif
endfor

这里我们直接用end作为循环变量,通过更新与否决定start是否改变。


总结:通过不断优化,我们得到了一个时间复杂度为 O(n),空间复杂度为O(1)的简单的动态规划算法。动态规划,就这么简单!优化无止境!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小的香辛料

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值