Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
注意判断输入得数是否都在一个集合中
#include <iostream>
#include <set>
using namespace std;
int pre[100010];
int vis[100010];
int find(int x){
if(pre[x]==x)
return x;
return pre[x]=find(pre[x]);
}
void in(int a,int b){
int x=find(a),y=find(b);
if(x!=y)
pre[x]=y;
}
int max(int x,int y){
if(x>y)
return x;
else
return y;
}
int main(){
int a,b;
for(int i=0;i<=100010;i++)
vis[i]=0,pre[i]=i;
while(scanf("%d %d",&a,&b)){
int mmax=0;
if(a==-1 && b==-1)
break;
if(a==0 && b==0){
printf("Yes\n");
continue;
}
mmax=max(a,b);
vis[a]=1,vis[b]=1;
in(a,b);
int f=0;
while(scanf("%d %d",&a,&b)){
if(a==0 && b==0)
break;
vis[a]=1,vis[b]=1;
mmax=max(max(a,b),mmax);
if(find(a)!=find(b))
in(a,b);
else
f=1;
}
set<int>we;
if(f==0){
for(int i=1;i<=mmax;i++)
if(vis[i]==1)
we.insert(find(i));
if(we.size()==1)
printf("Yes\n");
else
printf("No\n");
}
else
printf("No\n");
for(int i=0;i<=100010;i++)
vis[i]=0,pre[i]=i;
}
return 0;
}