欧几里得算法证明(辗转相处法)

证明:gcd(m,n) = gcd(n,m mod n).

证明如下:设m和n的最大公约数为k,即gcd(m,n) = k,则有m = i*k,n = j*k;再设a = m / n = i / j, b = m mod n,则b = m - a * n = 

i*k-a *j*k = (i-a*j)*k.因(i-a*j) = i mod j,而 i 和 j 互质,故(i-a*j)和 j 互质,从而 n 和 b 的最大公约数为 k 。

当递归出现 gcd(w,0)中的w即为最大公约数k,其原因是在上一次迭代里gcd(u,w)里u mod w值为0,说明u能被w整除。

综上所述,gcd(m,n) = gcd(n,m mod n).

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值