辗转相除法,又叫欧几里德(Euclidean)算法, 是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
计算公式gcd(a,b) = gcd(b,a mod b)。
算法简介:
欧几里德算法是用来求两个正整数最大公约数的算法。是由古希腊数学家欧几里德在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里德算法。
扩展欧几里德算法可用于RSA加密等领域。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里德算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
程序设计:
辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:
⒈ 若 r 是 a ÷ b 的余数,且r不为0, 则
gcd(a,b) = gcd(b,r)
⒉ a 和其倍数之最大公因子为 a。
另一种写法是:
⒈ 令r为a/b所得余数(0≤r<b)
若 r= 0,算法结束