自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(351)
  • 资源 (66)
  • 收藏
  • 关注

原创 AI 把内容做成了 “泔水”,但你的 “人味儿” 正在变贵

刷短视频时,你有没有过这种体验:刚刷到一篇 “治愈文案”,划两下又看到几乎一模一样的句式;点开一篇 “干货文章”,读了三句就觉得到处是套路——这些让你越看越麻木的东西,有了个精准的新名字:Slop。

2026-01-04 09:01:41 226

原创 AI大模型时代,计算机视觉课程如何™教”与“学”?

摘要 在AI大模型时代背景下,职业本科计算机视觉课程面临教学重构的挑战。职业本科学生具有鲜明的实践导向和就业需求,而行业对人才要求呈现高端化趋势:2025年计算机视觉算法工程师岗位减少50%,但高端岗位需求激增,硕士学历需求达56.8%。课程定位应为培养"理论+大模型技术+工程实践"的复合型人才。 理论教学需重构传统框架,融入多模态大模型(GPT-4V)、基础模型(SAM)、视觉Transformer(ViT)和跨模态技术(CLIP)等前沿内容,采用模块化递进设计:从基础理论到核心技术,

2025-12-12 13:04:37 1674 2

原创 大数据工程技术跨专业螺旋进阶任务开发细则

本文提出以"数据技术筑基→跨专业协同融合→综合项目落地→价值转化迭代"为路径的螺旋式人才培养模式。通过四阶段十二节点的任务体系,实现大数据工程、信息安全、软件工程、网络工程四大专业的深度融合:第一阶段聚焦单项技术筑基,第二阶段实现跨专业协作,第三阶段开展全链路项目实战,第四阶段完成成果转化与复盘。 该模式强调"前阶段输出为后阶段输入"的闭环设计,配备校企双导师和软硬件资源保障,采用过程性与成果性结合的考核体系。最终目标是培养能解决工业场景下数据采集、传输、安全治理和智

2025-11-17 19:35:50 639

原创 Flask-SQLAlchemy 操作 SQLite 数据库示例

摘要:这段代码展示了如何使用Flask-SQLAlchemy操作SQLite数据库,包含完整的CRUD操作流程。主要包括:1) 应用初始化与数据库配置;2) 定义User数据模型类;3) 创建数据库表;4) 实现增删改查功能;5) 运行开发服务器。代码清晰演示了如何创建表、添加数据、查询数据、更新记录等核心操作,并附有详细注释说明每个步骤的作用和注意事项,适合初学者学习Flask数据库操作的基础知识。

2025-11-02 15:03:46 872

原创 职业本科生想入行 AI 全栈?先搞懂这些能力与路径!

职业本科生想入行 AI 全栈?先搞懂这些能力与路径!

2025-10-28 09:41:40 619

原创 TCP 与 HTTP 协议深度解析:从基础原理到实践应用

TCP与HTTP协议深度解析:网络通信的核心技术 TCP/IP协议栈中,TCP和HTTP分工协作,实现可靠数据传输和应用交互。TCP作为传输层协议,通过三次握手、可靠传输、流量控制和拥塞控制四大机制,确保数据不丢失、不重复、按序到达,是AI系统中关键数据传输的首选。HTTP作为应用层协议,定义客户端与服务器的数据交互格式,具有无状态、请求-响应模型和灵活消息格式三大特性,支持AI Web项目、API服务和AI Agent交互。 在AI开发中,TCP保障模型参数传输、用户请求数据等关键场景的可靠性;HTTP则

2025-10-28 09:03:59 935

原创 AI 全栈工程师能力提升清单

AI全栈工程师能力提升清单涵盖核心技术、工程实践与业务落地三大维度: 核心技术:掌握PyTorch/TensorFlow等深度学习框架,熟悉模型调优(ONNX/TensorRT)和领域模型(Transformers/Detectron2),应用于CV/NLP/推荐系统等场景。 全栈开发:覆盖FastAPI/Spring Boot后端、React/Vue前端及数据库(PostgreSQL/Redis),支持高并发AI服务与可视化工具开发。 MLOps与云原生:运用MLflow/Kubeflow实现模型生命周期

2025-10-20 08:35:30 445

原创 工业模型落地难?这 7 步让故障预测模型从实验室跑向车间生产线

工业模型从实验室到车间落地面临诸多挑战挑战,本文提出7个关键步骤:1)明确预警时效、数据采集条件和运维能力3个核心需求;2)根据场景选择边缘053架构;3)优化模型适配边缘设备;4)配置抗造硬件环境;5)对接工业协议采集数据;6)联动PLC等系统实现预警;7)建立持续监控和迭代机制。关键在于贴合车间实际环境,平衡技术先进性与实用性,通过边缘部署、模型剪枝、标准化协议等实现稳定可靠的故障预测。落地需遵循"试点先行逢兼容易用"原则,逐步建立人机协同机制。

2025-10-01 13:17:34 759

原创 工业设备数据采集与故障预测

工业设备数据采集与故障预测系统摘要 工业设备故障预测系统的数据采集过程是系统核心环节,需实现设备运行状态关键数据的准确、实时、完整获取。该系统采用全链路工业级流程,包含目标定义、硬件选型eps、实时采集、数据传输、预处理和存储管理。数据采集针对不同设备类型(如电机、泵)和故障模式.doc、轴承磨损、电机过载等)设计差异化ikko采集策略,重点关注振动、温度、电气PLC、运行状态和环境、环境五类指标。系统采用传感器、数据采集卡/边缘网关组成的硬件架构,支持实时在线和非实时离线两种采集集模式,通过工业总线或有线

2025-10-01 12:56:37 1634

原创 YOLOv8 目标检测结果解读与优化

YOLOv8目标检测结果包含边界框、类别、置信度和可选掩膜四个核心要素。结果可以可视化输出或结构化存储(TXT/JSON/Python对象)。评估需结合定性观察和定量指标(mAP、Precision/Recall)。优化方向包括模型选择、参数调整(置信度/IOU阈值)、数据增强和输入尺寸调整。实际应用需在精度与速度间取得平衡,不同场景(实时检测/静态分析)需采用不同优化策略。

2025-09-21 17:42:44 1241

原创 python构造方法指的是__init__()方法

构造方法指的是__init__()方法。每个类默认都有一个__init__()方法,可以在类中显式定义__init__()方法。__init__()方法可以分为无参构造方法和有参构造方法。方法确实承担着构造方法的角色,负责对象的初始化工作。时,Python 会自动生成一个默认的无参构造方法,它不执行任何额外操作,仅完成对象的基础创建。,它代表当前正在创建的对象实例,用于在方法内部访问对象的属性和其他方法。,可以在创建对象时直接为属性赋值,避免了创建后再逐个赋值的繁琐。:无论定义无参还是有参的。

2025-09-15 09:28:20 204

原创 本科层次人工智能基础通识课:内容建设与工程实践深度融合方案

本文提出本科人工智能通识课建设方案,强调理论与实践结合。课程定位为"夯实基础认知+赋能工程应用",通过精简理论内容、增加工程案例,构建四层次实践路径:案例拆解分析、零代码工具实操、小组项目实践和企业观摩。实施保障包括建设案例库、组建跨学科教学团队、优化评价方式等。方案旨在帮助学生掌握AI基础知识,培养运用AI工具解决工程问题的能力,为跨学科应用奠定基础。

2025-09-10 13:37:44 2014

原创 如何理解 python中的封装

本文系统讲解了Python中封装的概念与应用。首先通过手机类比解释封装"隐藏细节、暴露接口"的核心思想,即类通过私有属性保护内部数据、公开方法提供安全接口。其次拆解封装的两个关键动作:隐藏内部细节(单/双下划线标记)和暴露公开接口(方法或@property)。以银行账户为例演示封装实现,展示如何通过方法校验保证数据安全。最后分析封装的价值:保护数据、降低使用成本、便于维护、明确代码边界。文章指出Python封装依赖"约定优于强制"的哲学,强调开发者应自觉遵守访问规范。

2025-09-09 09:08:11 589

原创 严格遵守人工智能应用集成系统开发标准

严格遵守AI应用集成系统开发标准,可实现“技术可控、安全可靠、合规可用”的目标:既能降低系统集成难度、提升维护效率,也能规避数据泄露、偏见歧视等风险,最终保障系统在业务场景中稳定落地。不同行业(如金融、医疗)需在此基础上叠加行业特定标准,形成更细化的开发规范。

2025-08-07 14:46:21 835

原创 访谈提纲B(双师型教师卷)

人工智能赋能职业教育的必要性与挑战 摘要:人工智能赋能职业教育具有显著必要性,体现在提升实践教学效率、适配行业快速发展和实现个性化技能培养等方面。其特殊性在于强行业针对性、实践导向深度和校企协同依赖性。然而,在"数字基建-垂域模型-数据治理"建设中面临三大困境:资源配置不足制约规模化应用,技术基建薄弱影响部署成效,技术适配不足限制应用深度。教师角色不会完全被替代,但需向"人机协同"模式转型。为应对技术快速迭代,建议构建动态培养方案,聚焦技术本质与行业落地,培养终身学习

2025-07-24 16:42:53 755

原创 基于python面向中医方剂分析的实用工具

摘要:本文介绍了一个中医方剂分析工具(TCMFormulaAnalyzer),支持从SQLite数据库或CSV文件加载方剂数据,并进行系统化分析。该工具采用模块化设计,涵盖数据预处理、药物频次统计、关联规则挖掘(Apriori算法)和聚类分析(K-means算法)等功能,并针对中药生僻字显示问题进行了专门优化。通过one-hot编码和TF-IDF特征提取,工具能发现药物配伍规律和方剂相似性分组,并提供多种可视化方式(柱状图、网络图、PCA降维图)。代码结构清晰,注重容错处理,适合作为中医方剂数据挖掘的基础框

2025-07-22 16:11:52 627

原创 人工智能教研室暑期培训flask全栈开发培训

本次Flask全栈开发培训为期4天,系统讲解了从基础到部署的全流程。首日涵盖环境搭建、路由系统与模板语法;次日重点讲解数据库操作(SQLAlchemy)和用户认证(Flask-Login);第三天转为RESTful API开发与前后端分离实践;最后一天聚焦生产环境部署(Nginx+Gunicorn)、性能优化与安全防护。培训采用项目驱动方式,通过构建个人博客系统,贯穿CRUD操作、用户权限、API设计等核心知识点,并最终实现云端部署和CI/CD流程配置,帮助学员掌握企业级Web开发全栈技能。

2025-07-21 22:03:17 238

原创 【基于Echarts的地图可视化】

该网页展示了一个中国牛只分布的可视化地图,使用Echarts库实现。地图标注了内蒙古、新疆、黑龙江等主要牧区的牛只存栏量数据,其中内蒙古存栏量最高达280万头,新疆190万头,黑龙江150万头。可视化采用散点图形式,点的大小与存栏量成正比,颜色深浅表示数量多少。地图支持交互操作,鼠标悬停可查看具体省份的存栏数据。该数据更新至2025年6月29日,直观呈现了中国牛只养殖的区域分布特征。

2025-06-29 09:24:03 263

原创 PyQt5 里,connectSlotsByName()可以自动连接信号和槽

是一种很方便的信号槽连接方式,能够减少样板代码。不过在大型项目中,为了保证代码的可读性,建议谨慎使用,或者结合手动连接方式一起使用。

2025-06-27 10:46:44 446

原创 注意力机制核心公式的通俗拆解:从“找钥匙“到信息加权的底层逻辑

这个公式之所以成为深度学习的核心,正是因为它用简洁的数学语言模拟了人类认知的本质——不是平均用力,而是根据相关性动态分配资源,让模型在海量信息中快速抓住重点。:好比"在图书馆找书"的过程。

2025-06-23 16:01:26 661

原创 通道注意力和空间注意力的通俗理解

通过这两种注意力机制的协同,计算机视觉模型能够模拟人类视觉的"选择性注意"机制,在复杂场景中快速定位并强化关键信息,显著提升任务表现。

2025-06-23 15:51:43 613

原创 python测试温度传感器写入数据库

测试数据库写入功能,可以用随机数生成模拟温度数据。'%H:%M:%S'

2025-06-22 08:53:54 619

原创 在Python中获取温度数据的方法

在Python中获取温度数据的方法取决于你的传感器类型和连接方式。如果传感器通过串口(如USB转TTL)连接到电脑,可以使用。如果传感器连接到网络并提供API接口,可以使用。如果传感器数据通过MQTT协议传输,可以使用。需要启用树莓派的1-Wire接口,并安装。根据硬件环境选择合适的实现方式,并将。函数集成到之前的数据库写入代码中。

2025-06-22 08:41:06 461

原创 智能体应用开发课程体系规划说明

智能体应用开发课程体系规划说明

2025-06-12 15:26:05 606

原创 项目名称:基于计算机视觉的夜间目标检测系统

轻量化级联检测模型(Lite-CascadeDet):结合知识蒸馏与渐进式检测思想,先利用轻量级骨干网络(如 MobileNetV3)进行粗检测,再通过紧凑的特征增强模块优化小目标与遮挡目标的定位,在保持实时性(35FPS)的同时,对夜间行人检测的召回率提升 8.7%。在暗室环境(照度<0.1lux)、月光环境(照度 1-10lux)、路灯环境(照度 10-50lux)下,测试系统对行人、车辆、小动物(如猫、狗)的检测准确率,要求 mAP≥88%。

2025-06-12 14:18:06 765

原创 智能警用装备建设与应用调研报告:现状、挑战与发展路径

智能警用装备建设与应用调研报告:现状、挑战与发展路径

2025-06-12 11:17:44 1166

原创 课程体系:AI系统应用开发工程师

AI系统应用开发工程师

2025-06-10 08:53:13 1226

原创 AI系统应用开发工程师的人才培养目标

AI系统应用开发工程师的人才培养目标

2025-06-10 08:49:18 782

原创 构建“技术筑基-场景落地-工程实践”三位一体的技术能力体系

平台搭建与管理操作系统:Linux(CentOS/ Ubuntu)系统管理(用户权限、服务启停)、虚拟化技术(VMware/KVM)。大数据平台:Hadoop/Spark(集群部署)、Elasticsearch(日志分析)、Prometheus+Grafana(监控告警)。云原生与容器技术容器化运维:Docker Compose(多容器编排)、Kubernetes(Pod/Service管理)、Istio(服务网格)。资源调度:CPU/内存监控(top/iostat)、GPU资源管理(nvid

2025-06-10 08:44:57 1127

原创 AI系统应用开发工程师培养的五大侧重方向

AI系统应用开发工程师培养的五大侧重方向

2025-06-10 08:35:25 928

原创 AI系统应用开发工程师的核心技能与高校课程体系指南

AI系统应用开发工程师的核心技能与高校课程体系指南

2025-06-10 08:28:25 1304

原创 2025年AI使用终极指南:当AI比你聪明,这4个认知颠覆和3个实操方法必须掌握

2025年AI使用终极指南:当AI比你聪明,这4个认知颠覆和3个实操方法必须掌握

2025-06-09 13:52:58 1393

原创 根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

2025-06-09 13:41:10 1379

原创 AI系统应用开发工程师

通过以上对比,可清晰看到开发与运维岗位在AI产业链中的不同定位:开发岗是“造轮子”,运维岗是“护轮子”,两者需紧密协作以推动AI项目从研发到落地的全周期闭环。

2025-06-07 09:09:31 862

原创 基于Flask框架的前后端分离项目开发流程是怎样的?

摘要: Flask前后端分离开发流程分为需求分析、架构设计、并行开发、集成测试和部署上线五个阶段。关键技术栈包括Flask(后端API)、Vue/React(前端)、Swagger(接口文档)及MySQL/Redis(数据库)。后端采用模块化设计(蓝图/ORM),前端通过Axios封装API请求,开发时配置代理解决跨域。测试阶段结合Mock数据联调,并通过pytest/Jest实现自动化测试。全文详细梳理了项目结构、代码示例及工具链,提供标准化开发参考。

2025-06-07 07:49:26 1117

原创 基于flask的前、后端工程师

基于flask的前、后端工程师

2025-06-07 07:48:11 1380

原创 宗诚:教育强国背景下高等职业学校专业群优化实施路径探析

《教育强国建设规划纲要(2024—2035年)》(以下简称《纲要》)为我国教育事业在未来一段时期的发展指明了方向。《纲要》提出的“优化实施高水平高等职业学校和专业建设计划”,蕴含着深刻的战略考量与价值追求,是继《国家职业教育改革实施方案》提出的“建设一批高水平骨干专业(群)”目标的再深化,旨在全方位提升职业学校关键办学能力,将职业教育与国家战略布局、重点产业需求、地方经济社会发展以及促进人的全面发展深度融合。

2025-06-04 11:18:31 884

原创 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?

人工智能工程技术专业与其他信息技术领域的关联性可通过系统性学习路径构建:理论层面建立知识图谱,将AI与大数据、计算机科学等专业核心技术节点关联;实践环节设计"AI+X"跨专业项目(如智能推荐系统、工业设备预警),打通技术链条;分阶段补充关联知识,借助工具实现技术可视化。学习过程中需避免孤立学习,强调工程落地与行业场景结合,培养技术系统思维。掌握AI与其他技术的协同关系,能提升跨领域问题解决能力,成为复合型人才。

2025-06-02 15:59:51 2012

原创 人工智能工程技术专业 和 其他信息技术专业 有哪些关联性?

人工智能工程与其他信息技术专业存在紧密关联。基础学科方面,数学、算法和编程是计算机科学、数据科学等专业的共同基础。技术体系上,AI依赖大数据处理、云计算、硬件加速及网络通信等技术。应用领域中,AI与金融科技、智慧医疗、智能制造等行业深度融合。专业发展上,AI与其他专业形成互补,如数据科学侧重数据处理,AI专注知识发现。计算机科学与技术、物联网、信息安全等专业在底层算法、边缘部署、数据安全等方面为AI提供支撑。这种"理论-技术-应用"的生态体系推动了智能化升级和跨专业创新。

2025-06-02 15:57:12 1418

原创 警惕!大模型正在悄悄废掉学编程的大学生?

警惕!大模型正在消解编程学习的核心能力 当前大模型被广泛应用于编程学习,却带来了三大隐忧:1)思考链断裂,学生直接生成代码却不理解底层逻辑;2)语法敏感度下降,过度依赖导致基础知识点记忆缺失;3)调试能力退化,遇到问题直接求助模型而非自主分析。调查显示,依赖模型的学生在算法理解、错误调试等关键能力上表现明显逊色。更严重的是,即时满足的学习方式正在摧毁学生的思考耐力和学习韧性。专家建议,应将大模型定位为辅助工具而非替代品,坚持"手动优先"原则,确保对生成代码的完整理解,并在实践中刻意保留手

2025-06-02 14:44:15 761

《本科毕业设计》:三阶魔方还原机器人-基于 python 和 Arduino,实现能够还原三阶魔方的机械结构.zip

《本科毕业设计》:三阶魔方还原机器人-基于 python 和 Arduino,实现能够还原三阶魔方的机械结构 三阶魔方还原机器人 基于 python 和 Arduino,实现能够还原三阶魔方的机械结构 系统流程 1 . 通过摄像头识别魔方颜色 2 . 将识别结果转化成魔方求解算法的输入 3 . 执行魔方求解算法,得出还原操作序列 4 . 指令优化与碰撞规避处理 5 . 通过wifi将序列发给硬件控制器 6 . 硬件控制器按照序列,控制机械结构执行还原 7 . over 依赖 python 版本: 3.x ● pywifi ● pillow ● numpy ● opencv-python $ pip install -r requirements.txt $ python3 guiconfig.py 开发 软件部分 ● [x] tkinter gui 组件的设计与开发 ● [x] Camera:基于cv2.VideoCapture 构造的摄像头管理类 ● [x] HoverButton:基于 tk.Button 提供可带参数事件绑定接口,并做了些许美化 ● [x] ViewCanvas:**颜色数据采集与调试工具**中的面板,用于展示视频与图片 ● [x] CubeFloorPlan:用于绘制并管理魔方平面展开图,存储并管理整个魔方的色块分布,并生成魔方色块序列 ● [x] HSVAdjuster:**颜色数据采集与调试工具**中的面板,实时调整颜色识别中使用的 hsv 范围并保存 ● [x] SampleAdjuster:**颜色数据采集与调试工具**中的面板,实时调整用于颜色识别的采样范围并保存 ● [x] Console:控制台模块,用于**主控程序**运行时的状态输出 ● [x] Window:Tk 窗口的封装,提供了 update_func 接口 ● [x] Ca

2025-12-21

毕设,前端微信小程序,后端python+django,在线点餐.zip

毕设,前端微信小程序,后端python+django,在线点餐 # 本科毕设:基于微信小程序+Python-Django的在线点餐系统 本本科毕业设计围绕餐饮行业数字化转型需求,设计并实现了一套以微信小程序为前端、Python-Django为后端的在线点餐系统,旨在解决传统线下点餐效率低、人力成本高、数据管理困难等问题,为中小型餐饮商家提供轻量化的数字化解决方案。 系统采用**前后端分离**架构,前端基于微信小程序原生框架开发,充分利用小程序无需安装、即开即用的特性,设计了用户端与商家端两大模块。用户端支持餐厅选择、菜品浏览、购物车管理、在线支付、订单查询等核心功能,通过自定义组件实现菜品分类展示与个性化推荐;商家端则提供菜品管理、订单处理、数据统计等操作,满足商家日常运营需求。 后端以Python-Django为核心框架,搭建RESTful API接口实现与前端的数据交互,采用MySQL数据库存储用户信息、菜品数据与订单记录,通过Redis缓存热点菜品信息提升响应速度,同时集成微信支付接口完成交易闭环。针对并发点餐场景,系统设计了订单状态实时同步机制,确保数据一致性。 该设计完成了从需求分析、架构设计到功能实现的全流程开发,不仅兼顾了用户的便捷点餐体验与商家的高效管理需求,还通过数据可视化模块为商家提供经营分析依据。系统的轻量化部署特性与低成本开发优势,使其具备较强的实际应用价值,也为高校软件工程专业的毕业设计提供了前后端协同开发的典型实践案例。

2025-12-21

本科毕设、MRI+PET、3D ResNet-18、阿尔兹海默症(Alzheimer's disease).zip

本科毕设、MRI+PET、3D ResNet-18、阿尔兹海默症(Alzheimer's disease) 基于多模态融合的脑疾病智能诊断方法 # 本科毕设:基于3D ResNet-18的MRI+PET多模态影像阿尔兹海默症检测 本本科毕业设计聚焦于阿尔兹海默症(AD)的早期辅助诊断难题,提出了一种融合MRI(磁共振成像)与PET(正电子发射断层扫描)多模态影像的3D ResNet-18检测模型,旨在利用深度学习技术提升AD诊断的准确率与效率。 传统AD诊断多依赖单一模态影像或临床量表,易受影像特征单一、主观因素干扰等问题影响。本研究针对这一痛点,首先对MRI和PET影像进行预处理,包括影像配准、归一化、裁剪等操作,提取大脑结构与代谢的双重特征;随后改进经典的3D ResNet-18网络,设计多模态特征融合模块,将两种影像的特征图进行通道级融合,弥补单一模态的信息缺失;同时通过迁移学习初始化网络权重,解决医学影像数据集样本量不足的问题。 实验采用ADNI公开数据集,将模型与传统机器学习方法及单模态3D ResNet-18模型对比,结果显示融合MRI+PET的改进3D ResNet-18模型在AD分类任务中,准确率、召回率与F1值均显著提升,实现了对AD、轻度认知障碍(MCI)与健康对照组的有效区分。 本设计不仅完成了模型的构建与验证,还通过可视化界面实现了影像上传、检测结果输出等功能,为临床辅助诊断提供了实用工具。研究成果验证了多模态影像融合与深度学习结合在AD检测中的优势,也为医学影像分析的本科毕设研究提供了典型的实践范式。 运行环境(AutoDL云服务器) 14核 Intel(R) Xeon(R) Gold 6330 CPU 24GB RTX3090 PyTorch 1.10.0 Monai(实现数据增强、数据集读取) Visual Studio Cod

2025-12-21

毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法 .zip

毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法。 # 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现 本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。 代码体系分为三大核心模块:首先是**仿真环境构建模块**,基于UE4搭建包含城市建筑、植被等复杂场景的三维地图,通过AirSim的API接口编写代码实现无人机的物理参数配置、传感器(摄像头、激光雷达)数据采集与运动控制,为强化学习提供真实的交互环境;其次是**强化学习算法模块**,选用DDPG/PPO等深度强化学习算法,通过Python编写网络模型代码,设计以导航路径偏差、目标距离、环境障碍物为核心的奖励函数,实现无人机自主避障导航与动态目标的实时跟踪;最后是**训练与验证模块**,编写数据交互代码实现UE4-AirSim与PyTorch框架的通信,通过批量训练优化网络权重,并设计多场景测试代码验证算法的鲁棒性。 代码采用模块化设计,实现了仿真环境与算法逻辑的解耦,支持场景参数、算法超参数的灵活调整。实验结果表明,该代码实现的强化学习模型能让无人机在复杂场景中完成厘米级的自主导航,并对移动目标保持稳定跟踪。这套代码不仅完成了毕业设计的核心功能验证,还为无人机强化学习的工程化应用提供了可复用的实现范式。

2025-12-21

本科毕业设计 基于Haar特征与AdaBoost算法的人脸检测的实现.zip

本科毕业设计 基于Haar特征与AdaBoost算法的人脸检测的实现 # 本科毕设:基于Haar特征与AdaBoost算法的人脸检测的实现 本本科毕业设计聚焦于计算机视觉领域的经典人脸检测任务,以Haar特征与AdaBoost算法为核心技术,完成了一套轻量级、高实时性的人脸检测系统,旨在深入理解传统机器学习算法在目标检测中的应用原理,同时验证该算法在实际场景中的检测效果。 传统人脸检测面临光照变化、姿态偏移、背景复杂等挑战,本研究首先针对Haar特征的提取进行优化,通过分类筛选边缘、纹理、灰度等关键特征,减少冗余特征对检测效率的影响;随后基于AdaBoost算法构建级联分类器,将大量弱分类器进行加权组合,形成强分类器,通过多轮迭代训练提升检测的准确率与召回率。在实现过程中,采用OpenCV库完成图像预处理(灰度化、直方图均衡化)、特征计算与分类器训练,同时设计了图像与视频流的检测接口,支持静态图片人脸检测与实时视频人脸追踪。 实验选取FDDB人脸数据集进行测试,结果显示该系统在正面人脸检测中准确率达92%以上,具备较快的检测速度,能够满足普通场景下的实时检测需求。此外,毕业设计还针对算法的局限性,分析了其在侧脸、大角度姿态人脸检测中的不足,并提出了结合特征扩展的改进思路。 该设计不仅完成了算法的理论研究与代码实现,还通过可视化界面展示检测结果,完整呈现了从算法原理到工程应用的全流程,为计算机视觉方向的本科毕业设计提供了典型的实践范例。

2025-12-21

学生宿舍管理系统(SSMLayui框架;毕业设计).zip

学生宿舍管理系统(SSM/Layui框架;毕业设计) # 本科毕设:基于SSM+Layui的学生宿舍管理系统 本本科毕业设计针对高校学生宿舍管理的数字化需求,采用SSM(Spring+SpringMVC+MyBatis)框架与Layui前端框架,设计并实现了一套集宿舍信息管理、住宿分配、报修维修、访客登记、水电费统计等功能于一体的学生宿舍管理系统,旨在替代传统人工登记、纸质审批的低效模式,提升宿舍管理工作的规范化与智能化水平。 系统采用前后端协同开发模式,后端基于SSM框架构建稳定的业务逻辑层与数据访问层,将用户管理、宿舍资源、维修工单等核心业务模块解耦,通过MyBatis实现与MySQL数据库的高效交互,同时利用Spring的AOP机制实现日志记录与权限控制,细化学生、宿管、管理员等不同角色的操作权限。前端选用Layui框架搭建简洁易用的界面,结合jQuery实现表单验证、数据表格渲染、弹窗交互等功能,兼顾了PC端操作的便捷性与界面的轻量化。 核心功能涵盖学生入住分配、宿舍卫生检查记录、维修申请与派单处理、访客信息登记查询、水电费自动核算等,其中针对维修工单设计了状态实时跟踪机制,实现学生报修、宿管派单、维修人员接单的全流程线上化。该设计完成了从需求分析、架构设计到功能测试的全流程开发,系统的落地应用可有效降低宿舍管理的人工成本,实现宿舍资源与日常事务的数字化管控,为高校后勤管理的信息化建设提供了可行的实践方案。

2025-12-21

毕业设计,房卡麻将设计.zip

毕业设计,房卡麻将设计 说明: 本源代码为《幼麟棋牌-四川麻将v1.0》,版权所有者为 成都幼麟科技有限公司 本产品客户端基于Cocos Creator开发。 为了回馈社区,特此将本产品的v1.0版本开源。 开源协议说明 本页面的软件遵照GPL协议开放源代码,您可以自由传播和修改,在遵照下面的约束条件的前提下:   一. 只要你在《幼麟棋牌-四川麻将v1.0》开源软件的每一副本上明显和恰当地出版版权声明,保持此许可证的声明和没有担保的声明完整无损,并和程序一起给每个其他的程序接受者一份许可证的副本,你就可以用任何媒体复制和发布你收到的原始的程序的源代码。你也可以为转让副本的实际行动收取一定费用,但必须事先得到本公司的同意。   二.你可以修改《幼麟棋牌-四川麻将v1.0》开源软件的一个或几个副本或程序的任何部分,以此形成基于程序的作品。只要你同时满足下面的所有条件,你就可以按前面第一款的要求复制和发布这一经过修改的程序或作品。   1. 你必须在修改的文件中附有明确的说明:你修改了这一文件及具体的修改日期。   2. 你必须使你发布或出版的作品(它包含程序的全部或一部分,或包含由程序的全部或部分衍生的作品)允许第三方作为整体按许可证条款免费使用。   3. 如果修改的程序在运行时以交互方式读取命令,你必须使它在开始进入常规的交互使用方式时打印或显示声明:包括适当的版权声明和没有担保的声明(或者你提供担保的声明);用户可以按此许可证条款重新发布程序的说明;并告诉用户如何看

2025-12-21

基于Web的大学生计算机设计大赛报名网站的开发.zip

本科毕业设计源码,含论文,课题名称:基于Web的大学生计算机设计大赛报名网站的开发 # 基于Web的大学生计算机设计大赛报名网站的开发 本本科毕业设计聚焦于大学生计算机设计大赛的赛事管理痛点,设计并实现了一套基于Web的报名网站系统,涵盖完整的赛事报名、作品提交、评审管理、信息公示等核心功能,旨在替代传统线下报名的低效模式,提升赛事组织与管理的数字化水平。 系统采用**前后端分离**架构,后端以Spring Boot为核心框架,结合MyBatis实现数据持久化,通过Shiro完成用户身份认证与权限控制,将学生、指导教师、赛事管理员等角色的操作权限精细化划分;前端采用Vue.js+Element UI构建响应式界面,兼顾PC端与移动端的访问体验。核心功能模块包括用户注册与登录、赛事信息发布、参赛团队组建、作品在线提交、报名信息审核、赛事数据统计等,其中针对大赛的团队协作需求,特别设计了团队成员管理、指导教师审核确认等个性化功能。 在技术实现上,系统引入阿里云OSS实现参赛作品的云端存储,通过ECharts可视化展示赛事报名数据与作品分类统计,同时优化了表单验证、数据批量导出等实用功能。本毕业设计不仅提供了完整的项目源码,还包含详细的论文阐述,从需求分析、系统设计、功能实现到测试部署进行了全面梳理,验证了系统的实用性与稳定性。该网站的落地应用,可有效降低赛事组织的人工成本,实现大赛报名全流程的线上化、规范化管理,为高校学科竞赛的数字化运营提供了可行的解决方案。

2025-12-21

毕业设计之SpringCloud-B2C电子商务平台App端.zip

毕业设计之SpringCloud-B2C电子商务平台App端 # 毕业设计之SpringCloud-B2C电子商务平台App端 本毕业设计聚焦于SpringCloud微服务架构下的B2C电子商务平台App端开发,旨在构建一套高可用、高扩展、用户体验优良的移动电商解决方案。系统以SpringCloud为核心后端支撑,整合Eureka服务注册与发现、Feign远程调用、Hystrix服务熔断、Zuul网关路由等组件,将用户、商品、订单、支付、物流等核心业务拆分为独立微服务,实现了业务解耦与分布式部署,为App端提供稳定、高效的接口服务。 App端基于Android原生(或React Native)技术开发,采用MVVM架构模式,划分为用户模块、商品模块、购物车模块、订单模块、个人中心等核心功能模块。用户可完成注册登录、商品搜索与浏览、加入购物车、在线支付、物流跟踪等全流程操作,同时集成了智能推荐、优惠券、评价体系等增值功能,提升用户消费体验。 在技术实现上,App端通过Retrofit与后端微服务进行数据交互,利用RxJava处理异步请求,借助Glide实现图片高效加载,并通过本地缓存优化离线访问体验。系统还兼顾了安全性与性能,采用JWT实现用户身份认证,通过数据加密保障支付信息安全,同时对接口请求进行节流与防抖处理,提升App运行流畅度。 该设计不仅实践了微服务架构在电商领域的应用,也结合移动开发技术实现了线上购物场景的全流程覆盖,为B2C电商平台的移动化落地提供了可参考的实践方案。

2025-12-21

毕设:面向领域快速移植的高精度分词系统.zip

毕设:面向领域快速移植的高精度分词系统 项目简介 本项目为本人毕业设计代码部分,后续会提供在线体验网站。 仓库构成 本仓库共包括三部分代码。 Build_JAR 该部分为核心代码,需要编译成jar包供其他两个项目使用(编译好的jar包未提供,data文件夹未提供)。 编译环境 ● 编码:UTF-8 ● IDE:Eclipse Oxygen.3a ● 语言:Java ● 框架:无 ● 测试:JUnit 4 ● 代码规范:Google Java Format ● (平台:Mac) 建议输出 项目名称“右键” -- Export -- 选择“JAR File” -- (一切默认) -- Finish。 Build_Desktop 该部分为JavaFX写的界面程序,需要先导入上一个项目中编译好的jar包。 编程环境 在上一个项目基础上,增加: ● JavaFX版本:2.0 打包 该项目需要使用Ant打包成应用程序。 Build_Web 该部分为RESTFul风格的展示网站,功能与上一个项目相似,后期会发布链接供大家测试。 编程环境 在第一个项目基础上,增加: ● RESTful Web Services:Jersey 2.2.7 编译 项目名称“右键” -- Export -- 选择“WAR File” -- (一切默认) -- Finish。 测试结果 | 语料 | P | R | F | | :-: | - | - | - | |《人民日报》|0.98686|0.97233|0.97954| |微博|0.98870|0.96147|0.97489| |PKU|0.99000| 0.96473|0.97719| |MSR|0.94709|0.97068|0.95874| |切分歧义|0.82696|0.93071|0.87577| |特定领域1|0.97645|0.99061|

2025-12-21

基于SpringBoot2流程监控的本科毕业设计管理系统.zip

毕业设计管理系统 基于SpringBoot2流程监控的本科毕业设计管理系统 技术栈 1 . SpringBoot2 JPA JWT 2 . LayUI 考虑Vue 和 iview 3 . PostgreSQL Redis 需求 目录 ├── doc 文档 ├── gradle gradle目录 ├── src 源码 └── static 静态文件源码 脚本 reconfig.sh 修改配置文件application.yml reboot.sh 更新镜像重启Docker容器 截图 [image] 压测情况: [image] # 基于流程监控的本科毕业设计管理系统设计与实现 ## 一、系统概述 ### 1.1 项目背景与意义 本科毕业设计是高校人才培养的重要环节,其流程涵盖**选题、开题、中期检查、论文提交、评阅、答辩、成绩录入**等多个节点,涉及学生、指导教师、评阅教师、教学管理员等多类角色。传统的毕业设计管理多依赖线下表格、邮件或简单的线上系统,存在**流程不透明、进度监控困难、信息同步不及时、审核效率低**等问题。 本系统基于**流程监控**核心思想,采用SpringBoot2、Vue+iView(可选LayUI)、PostgreSQL、Redis等技术构建,实现毕业设计全流程的数字化、自动化管理,通过实时跟踪各节点进度、设置超时提醒、统计分析流程数据,提升毕业设计管理的效率和规范性。

2025-12-21

Matlab-Prediction-NN-毕业设计:基于改进神经网络的风电功率预测系统.zip

毕业设计:基于改进神经网络的风电功率预测系统 Matlab_Prediction_NN-毕业设计:基于改进神经网络的风电功率预测系统 # 基于改进神经网络的风电功率预测系统设计与实现(Matlab版) ## 一、课题研究背景与意义 风电作为清洁可再生能源的重要组成部分,其装机容量和发电量占比持续提升,但风电功率具有**强随机性、波动性和间歇性**的特点,这给电力系统的调度、稳定运行和电网消纳带来了巨大挑战。精准的风电功率预测能够有效降低风电并网对电网的冲击,提高风电利用率,对风电产业的可持续发展具有重要的现实意义。 传统的神经网络(如BP神经网络)在风电功率预测中存在收敛速度慢、易陷入局部最优、泛化能力不足等问题。本课题通过对神经网络的结构、训练算法或融合策略进行改进,构建高精度的风电功率预测模型,并基于Matlab开发一套集数据预处理、模型训练、预测分析、结果可视化于一体的风电功率预测系统。 ## 二、系统总体设计 ### 2.1 系统架构 系统采用**模块化设计**,分为五大核心模块,各模块相互独立又协同工作,整体架构如下: ``` 风电功率预测系统 ├── 数据预处理模块:数据加载、清洗、归一化、特征选择 ├── 改进神经网络模型模块:改进算法实现、模型构建与训练 ├── 预测模块:实时预测、多步预测 ├── 结果分析模块:误差计算、对比分析 └── 可视化模块:数据曲线、预测结果、误差分布展示 ``` ### 2.2 技术路线 1. **数据采集**:选取某风电场的历史监测数据(风速、风向、温度、湿度、气压、实际风电功率等)。 2. **数据预处理**:处理缺失值、异常值,通过归一化消除量纲影响,采用相关性分析或主成分分析(PCA)进行特征选择。 3. **模型改进**:针对传统神经网络的不足,选择一种或多种改进策略(如结合粒子群优化(PSO)的BP神

2025-12-21

基于php的仿微博系统设计-毕业设计.zip

基于php的仿微博系统设计-毕业设计 # 基于PHP的仿微博系统设计-毕业设计介绍 在社交媒体快速发展的时代,微博作为轻量级的社会化媒体平台,以“短、平、快”的信息传播模式成为大众分享生活、获取资讯的重要载体。其核心的信息发布、社交互动、关注转发等功能,也成为高校计算机专业毕业设计中考察Web开发能力的经典场景。本次毕业设计以微博的核心业务逻辑为参考,采用**PHP**作为核心开发语言,结合MySQL数据库与前端Web技术,设计并实现了一套功能完整、轻量级的仿微博社交系统。既还原了微博的核心社交体验,也完成了对PHP Web开发技术栈的综合应用与软件工程全流程的实践探索。 ## 一、系统开发背景与意义 随着互联网社交形态的不断演进,用户对即时性、轻量化的社交分享需求日益凸显。微博凭借140字短内容发布、关注互动、话题传播等核心功能,构建了高效的信息传播生态,成为大众社交的重要载体。而在技术层面,PHP作为开源、跨平台、入门门槛低且开发效率高的服务器端脚本语言,凭借丰富的扩展库和成熟的生态,成为中小型Web应用开发的主流选择,尤其适合社交类轻应用的快速构建。 在高校毕业设计的场景下,仿微博系统的开发具有重要的实践价值:一方面,系统涵盖了用户认证、数据存储、异步交互、社交逻辑等Web开发的核心场景,能够全面检验开发者对PHP语法、数据库设计、前后端交互等知识的掌握程度;另一方面,通过还原微博的核心业务流程,开发者可深入理解社交类系统的设计思路,锻炼需求分析、系统设计、编码实现和测试部署的全流程能力,为后续从事Web开发工作奠定坚实基础。同时,该系统的实现也为小型社交平台的开发提供了可参考的技术方案。 ## 二、系统核心技术栈解析 本系统采用经典的LAMP(Linux+Apache+MySQL+PHP)技术架构,搭配前端主流技术实现交互,技术选型贴合中小型Web应用的开发

2025-12-21

springMVC-servlet 美食网站-毕业设计参考.zip

springMVC-servlet 美食网站-毕业设计参考 # SpringMVC+Servlet美食网站毕业设计介绍 正值移动互联网与餐饮数字化融合发展的初期,大众对美食的需求从单纯的线下味觉体验,逐步转向“线上获取资讯、学习菜谱、分享美食体验”的多元化需求。彼时市面上的美食类网站虽有一定数量,但部分存在功能单一、界面交互生硬、数据更新不及时等问题,难以满足用户的综合需求。本次毕业设计以大众对美食信息的获取与互动需求为出发点,采用**SpringMVC+Servlet**为核心技术架构,结合传统Java Web开发技术,设计并实现了一套集美食资讯、菜谱分享、食材查询于一体的美食网站,既满足了普通用户的美食相关需求,也完成了对Java Web核心开发技术的综合应用与实践验证。 ## 一、系统开发背景与意义 中国在线餐饮市场规模突破4000亿元,数字化餐饮服务逐渐融入大众生活,用户对线上美食网站的需求不再局限于餐厅推荐,而是延伸到家常菜谱学习、食材搭配指导、美食经验分享等多个维度。 在技术层面,传统纯Servlet开发的Web应用存在代码耦合度高、请求处理流程管理繁琐、视图与业务逻辑分离不清晰等问题,而2018年已成为Java Web开发主流的SpringMVC框架,基于MVC设计模式可与Servlet无缝集成——既保留了Servlet对HTTP Request/Response的底层处理能力,又通过SpringMVC的DispatcherServlet实现了请求的统一分发与全流程管理,大幅降低了开发复杂度。 本系统的开发,一方面为用户提供了一站式美食信息平台,解决了当时美食类网站功能分散、交互体验不佳的痛点;另一方面,作为毕业设计,系统开发涵盖了Servlet底层开发、SpringMVC框架应用、数据库设计与操作等核心环节,有效检验了大学阶段所学的Java Web

2025-12-21

Spring+SpringMVC+MyBatis+Mysql 销售管理系统 毕业设计.zip

Spring+SpringMVC+MyBatis+Mysql 销售管理系统 毕业设计 # Spring+SpringMVC+MyBatis+MySQL销售管理系统毕业设计介绍 在数字化经济高速发展的当下,企业销售业务的规模化、复杂化对管理效率和数据处理能力提出了更高要求,传统人工销售管理模式存在效率低下、数据易出错、决策缺乏数据支撑等问题。本次毕业设计以企业销售管理的实际需求为出发点,采用**Spring+SpringMVC+MyBatis(SSM)** 开源框架结合**MySQL**数据库,设计并实现了一套高效、可扩展、易维护的销售管理系统,旨在为企业销售业务的全流程管理提供数字化解决方案,同时也完成了对Java Web开发技术栈的综合应用与实践探索。 ## 一、系统开发背景与意义 随着市场竞争的加剧,企业需要对销售订单、客户信息、商品库存、销售统计等核心业务进行精细化管理。传统的Excel表格、纸质记录等管理方式,不仅难以实现数据的实时共享与同步,也无法快速生成多维度的销售分析报表,制约了企业的市场响应速度和决策效率。 本系统基于SSM框架开发,充分利用Spring的IoC(控制反转)和AOP(面向切面编程)特性实现组件解耦与业务逻辑的模块化,通过SpringMVC完成请求分发、视图解析和前后端交互,借助MyBatis实现灵活的数据库操作,搭配MySQL高性能的关系型数据库存储业务数据。系统的实现不仅能解决企业销售管理的实际痛点,提升管理效率,也使开发者深入掌握了Java EE企业级开发的核心技术栈,锻炼了需求分析、系统设计、编码实现和测试部署的全流程开发能力,为后续从事软件开发工作奠定了坚实基础。 ## 二、系统核心技术栈解析 1. **Spring框架**:作为系统的核心容器,负责对象的创建、依赖注入和生命周期管理,通过AOP实现日志记录、事务管理等横切关注

2025-12-21

毕业设计 基于深度学习的视觉问答.zip

毕业设计: 基于深度学习的视觉问答 毕业设计 对于视觉问答(VQA)的研究具有深刻的学术意义和广阔的应用前景。目前,视觉问答模型性能提升的重点在于图像特征的提 取,文本特征的提取,attention权重的计算和图像特征与文本特征融合的方式这4个方面。本文主要针对attention权重的计算和图 像特征与文本特征融合这两个方面,以及其他细节方面的地方相对于前人的模型做出了改进。本文的主要工作在于本文使用 open-ended模式,答案的准确率采用分数累积,而不是一般的多项选择。本文采用CSF模块(包括CSF_A和CSF_B)不仅对 spatial-wise进行了权重计算,还对channel-wise进行了权重计算。本文采用MFB模块和ResNet152 FC层之前的tensor来结合 LSTM的输出来计算每个区域的权重,而不是直接把image feature和question feature结合本文采用SigMoid来计算最后的分布, 而不是一般的softmax(实验部分会有对比两者的差异)。 总体模型的架构

2025-12-21

基于Activiti流程监控的毕业设计管理系统.zip

基于Activiti流程监控的毕业设计管理系统 # 基于Activiti流程监控的毕业设计管理系统 本科毕业设计是高校人才培养体系中衔接理论教学与实践应用的关键环节,其管理流程涵盖选题、开题、中期检查、论文提交、评阅、答辩及成绩核定等多个核心节点,涉及学生、指导教师、评阅教师、教学管理员等多类角色,流程的规范性与进度的可控性直接影响毕业设计的质量与教学管理效率。传统的毕业设计管理模式多依赖线下纸质审批、邮件沟通或简单的线上表单系统,存在流程节点不透明、进度监控滞后、审核流转效率低、异常情况处理不及时等问题,难以满足高校规模化、精细化的教学管理需求。 基于Activiti流程监控的毕业设计管理系统,以**Activiti工作流引擎**为核心技术支撑,结合SpringBoot、Vue、PostgreSQL、Redis等主流技术栈,构建了一套全流程数字化、自动化的毕业设计管理平台。该系统将毕业设计的全流程抽象为可配置的工作流模型,通过Activiti引擎实现流程节点的定义、流转规则的配置以及流程实例的生命周期管理,打破了传统管理模式中流程固化的局限,支持教学管理员根据不同专业、不同年级的培养要求,灵活调整流程节点的数量、顺序、审核规则及时间节点。 在流程监控层面,系统依托Activiti的流程实例跟踪能力,实现了对每个学生毕业设计流程的**实时可视化监控**:不仅能直观展示各节点的完成状态、处理人、处理时间等关键信息,还能通过自定义的超时预警规则,对超期未完成的节点自动触发提醒(系统消息、邮件等),帮助教学管理员及时发现流程卡顿问题并介入处理。同时,系统基于Activiti的历史流程数据,提供了多维度的统计分析功能,包括各流程节点的平均处理时长、不同教师的审核效率、各专业的流程完成率等,为教学管理决策提供了数据支撑。 系统还围绕不同角色的核心需求设计了精细化的功能模块:学

2025-12-21

基于SpringBoot+Vue前后端分离的若依Java快速开发框架-财务管理系统-毕业设计.zip

基于SpringBoot+Vue前后端分离的若依Java快速开发框架-财务管理系统-毕业设计 帆楼财务管理系统 基于SpringBoot+Vue前后端分离的若依Java快速开发框架 项目简介 [comment]: <> (若依是一套全部开源的快速开发平台,毫无保留给个人及企业免费使用。) ● 前端采用Vue、Element UI。 ● 后端采用Spring Boot、Spring Security、Redis & Jwt。 ● 权限认证使用Jwt,支持多终端认证系统。 ● 支持加载动态权限菜单,多方式轻松权限控制。 ● 流程引擎使用Flowable,包含表单配置和流程定义。 内置功能 1 . 合同管理:项目从合同开始,此模块包括合同基础信息的维护和合同文件的上传下载与提交申请。 2 . 发票管理:资金流动靠发票作为凭证,对员工提交的发票信息进行核查并录入,添加合同收入发票。 3 . 报销管理:员工申请报销,提交发票并申请报销流程。 4 . 工资管理:记录每月员工的工资,包括五险一金和奖惩。 5 . 采购管理:申请报销项目采购,提交发票并申请报销流程。 6 . 项目成本:对正在进行或已完成的项目进行成本核算,核算内容有账期总收入、人员成本、采购成本、其他支出和总计利 润。 7 . 项目管理:对项目信息进行维护。 8 . 工时管理:根据项目添加员工的工时信息,为项目人员成本核算提供数据。 9 . 员工管理:一个员工对应一个用户,一个员工只属于一个部门。 1 0 . 用户管理:用户是系统操作者,该功能主要完成系统用户配置。 1 1 . 流程管理:完成合同申请、报销申请、采购申请等需要审核的任务。 1 2 . 部门管理:配置系统组织机构(公司、部门、小组),树结构展现支持数据权限。 1 3 . 岗位管理:配置系统用户所属担任职务。 1 4 . 菜单管理:配置系统菜单,操作权限,

2025-12-21

毕设参考基于flask+sqlite+html+推荐算法二手好房网站-本地数据库.zip

房源推荐系统使用说明文档 1. 项目概述 1.1 项目简介 本项目是一个基于Flask框架开发的房源推荐系统,主要功能包括房源展示、搜索、用户管理和个性化推荐等。系统采用响应式设计,支持多设备访问,提供了良好的用户体验。 1.2 技术栈 后端框架: Flask 2.0+ 数据库: SQLite ORM框架: SQLAlchemy 前端技术: HTML5, CSS3, JavaScript, Bootstrap 4 数据可视化: ECharts 推荐算法: 基于用户的协同过滤(皮尔逊相关系数) 2. 环境搭建 2.1 系统要求 Python 3.7+ Windows/macOS/Linux操作系统 2.2 安装步骤 克隆项目代码 git clone <项目仓库地址> cd <项目目录> 创建虚拟环境 # Windows python -m venv venv venv\Scripts\activate # macOS/Linux python3 -m venv venv source venv/bin/activate 安装依赖包 pip install -r requirements.txt 3. 运行项目 3.1 生成模拟数据 系统提供了模拟数据生成脚本,可以快速生成测试数据: python generate_fake_data.py 生成的数据包括: 80个用户数据 400个房源数据 200条推荐记录数据 3.2 启动服务 python app.py 服务将在 http://127.0.0.1:5000 启动。 4. 功能介绍 4.1 首页功能 房源概览: 展示房源总数量 最新房源: 展示最近发布的6个房源 热门房源: 展示浏览量最高的4个房源 搜索功能: 支持按地区和户型搜索房源 4.2 房源列表页 最新房源列表: 按发布时间倒序展示所有房源,支持分页

2025-12-17

Vue+ElementUI+Flask+MysqlSqlite+Yolov5 技术栈的智慧农场系统架构与实现方案.zip

基于多技术栈的智慧农场系统设计与实现 智慧农场系统是现代农业与信息技术结合的典型应用,通过整合物联网、人工智能和数据管理技术,实现农业生产的智能化管理。以下将详细介绍基于 Vue+ElementUI+Flask+Mysql/Sqlite+Yolov5 技术栈的智慧农场系统架构与实现方案。 系统整体架构设计 智慧农场系统采用前后端分离架构,分为四个核心层: 前端展示层:Vue.js + ElementUI 后端服务层:Flask 框架 数据存储层:MySQL/SQLite 数据库 AI 模型层:Yolov5 (PyTorch) 图像识别模型 各层通过 RESTful API 接口通信,形成完整的技术闭环。 前端实现:Vue+ElementUI 系统界面模块设计 前端采用 Vue 组件化开发,结合 ElementUI 组件库构建高效管理界面,主要模块包括: 仪表盘模块:实时展示农场环境数据(温湿度、土壤墒情、光照等) 作物监控模块:基于图像识别的作物生长状态可视化 设备控制模块:灌溉、通风、施肥等设备的远程操控面板 数据分析模块:历史数据统计图表(ECharts 集成) 用户管理模块:角色权限控制、操作日志记录

2025-06-20

LifeHelper多功能移动端应用-毕业设计.zip

# 毕业设计——LifeHelper多功能移动端应用 本毕业设计完成的LifeHelper是一款综合型移动端应用,核心信息如下: ## 一、核心功能模块 应用涵盖多类实用功能,主要包括:用户模块、知乎日报、小视频、新闻、天气、笑话、干货集中营,支持下载试玩体验。 ## 二、核心技术栈 开发过程中应用的核心知识点丰富,包括:MVP架构、SVG矢量图、Material Design设计规范、OkHttp3、GSON、Glide、组件化与路由、Kotlin编程语言、热更新、Retrofit2、RxKotlin及RxAndroid等。 ## 三、后台设计与部署 后台采用自研Spring Boot服务+ Bmob组合实现,选择Spring Boot是因其学习和使用成本低、开发效率高;后台实现了签到、注册、登录、点赞、评论、收藏等基础功能,部署于腾讯云服务器(稳定性较好),但因本人是新手,后台代码存在不够稳定的情况,后台代码可查阅指定地址。 ## 四、补充说明 1. 附带多组应用界面/功能展示截图; 2. 总结:受开发时间紧张影响,部分功能未完善,若使用过程中发现Bug,可提交issue反馈。

2025-12-23

毕业设计-基于java web的文献管理系统.zip

毕业设计--基于java web的文献管理系统 # 毕业设计 - 基于Java Web的文献管理系统 本毕业设计聚焦高校图书馆、科研实验室的文献管理痛点,设计并实现一套基于Java Web的文献管理系统,旨在通过规范化的Web解决方案,优化文献录入、检索、借阅、归档全流程,适配毕业设计“技术应用+业务落地”的核心考核目标。 系统采用B/S架构,基于Java语言开发,整合Spring MVC/SSM框架、MySQL数据库构建核心技术栈,遵循MVC设计模式保证代码模块化与可拓展性;面向管理员、教师、学生三类用户设计分级权限体系,核心功能涵盖文献元数据(标题、作者、分类、摘要等)的增删改查与Excel批量导入导出、多维度精准检索(关键词、分类、发表时间、作者)、文献收藏与借阅状态管控、借阅日志追溯、文献分类归档及数据统计报表生成;同时配备权限校验、数据定期备份、操作日志记录等安全辅助功能,保障系统数据安全。 该系统完整覆盖Java Web开发、框架应用、数据库设计、权限控制等核心知识点,既贴合高校文献管理的真实业务场景,又能检验学生从需求分析到功能实现的全流程开发能力,是适配毕业设计的典型实践方案。

2025-12-23

SpringMVC+Hibernate+Spring+SqlServer学生信息管理系统,毕设专用.zip

学生信息管理系统,毕设专用 StudentInfo 学生信息管理系统 学生信息管理系统,SpringMVC+Hibernate+Spring+SqlServer 学生信息管理,共有三种角色,管理员,教师,学生,提供角色权限控制 [image] 安装 直接pull项目到IDE中,从项目WebRoot/resource下执行sql脚本创建sqlserver数据库 配置WEB-INF/lib文件到运行环境,修改applicationContext.xml中的sqlserver数据库账户和密码 使用 使用admin账户admin密码登陆系统,请自行添加老师和学生, 学生支持批量导入,模板在WebRoot/excelTemplate下。 功能介绍 提供消息展示,权限控制,登陆验证等 代码最大化代码复用 管理员 ● 班级管理: 1 . 查找班级 按班级姓名模糊查询,修改班级异步刷新。 2 . 添加班级 3 . 添加年级 ● 课程管理: 1 . 查找课程信息 按课程姓名模糊查询,修改课程异步刷新。 2 . 添加课程信息 ● 学生信息管理: 1 . 查找学生信息 按学生姓名模糊查询,修改学生信息异步刷新。 2 . 查找班级学生信息 3 . 添加学生信息 ● 信息展示: 1 . 班级信息 分页Datatable显示 2 . 学生信息 分页Datatable显示 3 . 课程信息 分页Datatable显示 4 . 新增教师 5 . 信息发布 教师 ● 班级管理: 1 . 查找班级 按班级姓名模糊查询,修改班级异步刷新。 ● 课程管理: 1 . 查找课程信息 按课程姓名模糊查询,修改课程异步刷新。 2 . 查看学生成绩 学生成绩DataTable分页显示 ● 学生信息管理: 1 . 查找学生信息 按学生姓名模糊查询,修改学生信息异步刷新。 2 . 学生成绩管理 查找具体班级下的学生成绩,并异

2025-12-23

毕业设计,基于php的学生管理系统.zip

毕业设计,基于php的学生管理系统 # 毕业设计 - 基于PHP的学生管理系统 本毕业设计聚焦高校及中职院校学生管理的实际业务需求,设计并实现一套基于PHP的学生管理系统,旨在通过轻量化、易维护的Web解决方案,优化学生信息管理、成绩统计、班级管控等核心流程,适配毕业设计“技术落地+知识应用”的双重考核目标。 系统采用B/S架构,面向管理员、教师两类核心用户设计分级权限体系,核心功能覆盖学生基础信息的增删改查(支持Excel批量导入/导出)、课程成绩录入与多维度统计分析、班级信息管理、考勤记录与异常提醒、数据报表自动生成;同时配备权限分级管控、数据定期备份恢复、操作日志追溯等安全辅助功能,保障数据安全性与操作可追溯性。 技术层面基于PHP+MySQL主流技术栈开发,前端结合HTML、CSS、JavaScript实现简洁易用的交互界面,后端通过PHP完成业务逻辑处理,MySQL实现学生信息、成绩、考勤等数据的持久化存储,系统遵循MVC设计模式,代码模块化设计且注释完整,适配多浏览器访问,降低二次开发与维护成本。该系统完整覆盖PHP后端开发、数据库设计、权限控制、数据可视化等核心知识点,既贴合真实的学生管理业务场景,也能帮助学生检验Web开发领域专业知识的综合应用能力,是适配毕业设计的典型实践方案。

2025-12-23

基于Spring Boot 毕业设计选题系统.zip

毕业设计选题系统 jxt 介绍 java 毕业设计选题系统 软件架构 软件架构说明 技术采用: 后端架构: Spring Boot 、MyBatis 前端模板引擎: Freemark 前端UI框架: X-admin 数据库:MySQL 功能分析: 学生模块: ①选择题目 ②查看已选择题目 ③删除已选择题目 ④编辑学生基本信息 管理员模块: ①设置系统信息(如是否开启学生注册功能) ②查看编辑教师信息 ③查看编辑分类信息 ④查看编辑题目信息 ⑤查看编辑学生信息 ⑤查看删除已选择题目功能 地址 jxt 管理员登录 (管理员名称:admin,密码:111111) 学生登录 (学号:2015107250212,密码:111111)

2025-12-23

安卓Android求职招聘系统app设计毕业源码案例设计.zip

安卓Android求职招聘系统app设计毕业源码案例设计 # 安卓Android求职招聘系统app设计毕业源码案例设计 本案例是面向高校计算机、软件工程等专业的Android求职招聘系统APP源码方案,专为毕业设计打造,兼顾技术实践性与业务贴合度,总代码结构规范、注释完整,适配毕业设计的考核要求。 案例聚焦求职者(高校毕业生、职场新人)与企业HR双角色核心需求,采用轻量化设计,避免功能冗余,降低开发调试难度。核心功能覆盖双角色注册登录(支持手机号验证、密码加密存储、密码找回);求职端可实现职位多维度搜索筛选、简历一键投递、面试通知接收、意向职位收藏;招聘端支持职位发布/编辑/下架、简历筛选标记、自定义面试邀约发送;还配备本地数据缓存、简单投递/发布数据统计等辅助功能,提升使用体验。 技术层面基于Android Studio开发,采用Java/Kotlin主流语言,适配多尺寸Android设备,通过SQLite实现本地数据存储,界面遵循Material Design规范,代码模块化设计便于二次开发。该案例覆盖Android开发、数据加密、本地存储、用户交互等核心知识点,完整还原从需求分析到功能实现的开发流程,可直接复用或拓展功能,帮助学生检验专业知识综合应用能力,是适配毕业设计的优质源码参考案例。

2025-12-23

基于SpringSpringMVCHibernate计算机专业认证在线考试系统.zip

基于Spring/SpringMVC/Hibernate计算机专业认证在线考试系统 计算机专业认证在线考试系统 毕业设计,个人独立完成 功能模块图 [image] 技术选型 ● 前端 ● Html/Css/JavaScript ● Bootstrap ● jQuery ● UploadFive ● 后端 ● Spring/SpringMVC/Hibernate ● Spring Security ● slf4j/log4j ● Gson ● POI ● Druid ● 数据库 ● MySQL 界面展示 [image] ER图 [image] 项目包结构 ● src.main ● java ● pers.corvey.exam ● controller ● common ● sys ● service ● common ● sys ● dao ● entity ● common ● sys ● ui ● support ● form ● hibernate ● security ● exception ● utils ● resources ● webapp ● common ● static ● css ● fonts ● img ● js ● WEB-INF ● views ● sys ● exception

2025-12-23

毕业设计 - 基于Android平台的西安市公交路线查询系统的设计与实现.zip

毕业设计 - 基于Android平台的西安市公交路线查询系统的设计与实现 # 毕业设计 - 基于Android平台的西安市公交路线查询系统的设计与实现 本毕业设计聚焦西安市公共交通出行需求,设计并实现一款基于Android平台的公交路线查询系统。系统以实用性、便捷性为核心目标,整合西安市公交路网数据,为用户提供高效、精准的公交出行解决方案。 ## 系统核心定位 - 面向西安市市民及游客,解决公交出行中路线规划、站点查询、实时信息获取等核心痛点。 - 依托Android移动终端的便携性,实现“随时查询、即时响应”的出行辅助功能,提升公交出行体验。 ## 主要功能模块 - 路线查询:支持起点到终点的多种规划方式,包括最快路线、最少换乘、最短步行等,显示详细站点列表及换乘指引。 - 站点查询:提供公交站点搜索功能,可查看途经该站点的所有公交线路、首末班车时间及实时到站预估。 - 线路详情:展示单条公交线路的全程站点、运行区间、发车间隔等基础信息,支持线路收藏功能。 - 辅助功能:包含离线数据缓存、历史查询记录、站点地图定位等,适配不同网络环境及使用场景。 ## 技术实现要点 - 开发环境:基于Android Studio搭建开发平台,采用Java/Kotlin编程语言进行客户端开发。 - 数据处理:整合西安市公交官方公开数据,构建结构化数据库,通过数据解析与清洗确保信息准确性。 - 核心算法:采用Dijkstra算法或A*算法优化路线规划逻辑,提升查询效率与路径合理性。 - 界面设计:遵循Android Material Design设计规范,实现简洁直观、操作流畅的用户界面,适配不同屏幕尺寸的Android设备。 ## 系统价值与意义 - 实用价值:为用户提供可靠的公交出行参考,减少候车时间、降低换乘成本,助力绿色出行。 - 实践意义:结合Android开发、数据库设

2025-12-23

本科毕业设计,基于Android的人脸门禁系统.zip

本科毕业设计,基于Android的人脸门禁系统 本科毕业设计,基于Android的人脸门禁系统   传统的门禁系统以钥匙作为验证手段,便捷程度低,丢失钥匙之后会导致极大的安全问题。人脸是一种极易获得的生物特 征,具有唯一性、稳定性的特点,并且使用时设备无需与人脸接触,因此可以作为新一代的门禁验证手段。近年来,随着 Android移动设备性能的不断提升,使得在移动设备上进行人脸识别成为可能。本repo设计并开发了一个基于Android平台的人脸 识别门禁系统,并解决了在实际运用中可能遇到的光照变化,人脸姿态变化等情况。主要内容如下: ● 1)基于双眼检测的正脸判断算法研究。人脸识别中,人脸的姿态变化会导致识别率降低。首先研究实现了基于Haar特征的 Adaboost人脸检测算法,检测定位出人脸的框架和双眼的位置。然后通过人脸与双眼的位置关系,提出了一个正脸判断的 方法。实验表明,该方法有效地降低了人脸姿态问题对于整个识别系统的影响。 ● 2)基于LBP+PCA的人脸识别算法研究。首先分析了局部二值模式LBP和主成份分析PCA的原理,研究了LBP与PCA相结合 的特征提取方法。相对于单独使用PCA方法,该组合方法能够有效地降低光照变化对人脸识别准确度的影响。然后,采用 支持向量机对特征进行分类,并利用置信度计算方法,来有效地表示人脸和分类结果的隶属程度。实验表明,该算法对于光 照变化情况下的人脸识别,准确率有了明显的提升。 ● 3)Android平台上人脸识别门禁系统的设计与实现。分析了系统的需求,设计了具有用户注册、人脸检测与识别、门禁开 关、管理员模块、通知模块等功能模块的人脸识别门禁系统。然后在Android平台上,利用Java语言和计算机图像视觉库 Opencv,按照软件工程逻辑完成了系统的整体开发。整个系统经过测试运行,能够满足典型环境中的使用需求。 部分系统界

2025-12-23

毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法 .zip

毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法。 # 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现 本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。 # 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现 本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。 代码体系分为三大核心模块:首先是**仿真环境构建模块**,基于UE4搭建包含城市建筑、植被等复杂场景的三维地图,通过AirSim的API接口编写代码实现无人机的物理参数配置、传感器(摄像头、激光雷达)数据采集与运动控制,为强化学习提供真实的交互环境;其次是**强化学习算法模块**,选用DDPG/PPO等深度强化学习算法,通过Python编写网络模型代码,设计以导航路径偏差、目标距离、环境障碍物为核心的奖励函数,实现无人机自主避障导航与动态目标的实时跟踪;最后是**训练与验证模块**,编写数据交互代码实现UE4-AirSim与PyTorch框架的通信,通过批量训练优化网络权重,并设计多场景测试代码验证算法的鲁棒性。 代码采用模块化设计,实现了仿真环境与算法逻辑的解耦,支持场景参数、算法超参数的灵活调整。实验结果表明,该代码实现的强化学习模型能让无人机在复杂场景中完成厘米级的自主导航,并对移动目标保持稳定跟踪。这套代码不仅完成了毕业设计的核心功能验证,还为无人机强化学习的工程化应用提供了可复用的实现范式。

2025-12-21

毕业设计-基于移动互联网的点餐系统.zip

毕业设计-基于移动互联网的点餐系统 # 毕业设计-基于移动互联网的点餐系统 本基于移动互联网的点餐系统针对传统餐饮行业线下点餐效率低、人力成本高、数据管理混乱等痛点设计开发,是一套集用户点餐、商家管理、订单处理于一体的全流程数字化解决方案,作为毕业设计,融合了移动开发、前后端分离、云服务等核心技术,实现了餐饮服务的智能化升级。 系统采用“微信小程序用户端+Vue商家管理端+Spring Boot后端”的架构模式:用户端基于微信小程序原生框架开发,支持菜品浏览、分类筛选、购物车结算、在线支付、订单查询等功能,借助微信登录与支付接口,简化了用户操作流程;商家管理端以Vue框架搭建,实现菜品上下架、订单实时提醒、营业数据统计、库存管理等功能;后端基于Spring Boot框架构建RESTful API,处理业务逻辑与数据交互,数据存储采用MySQL数据库,保证数据的安全性与可扩展性。 此外,系统加入了桌号定位、催单评价、会员积分等特色功能,同时优化了高并发场景下的订单处理机制,提升了系统稳定性。相较于传统点餐模式,该系统将点餐效率提升60%以上,大幅降低了商家的人力成本,也为消费者提供了更便捷的用餐体验。在毕业设计中,该项目充分锻炼了需求分析、系统架构设计与跨端开发的综合能力,是一次理论与实践结合的完整工程训练。

2025-12-21

毕业设计-基于微信小程序的网络电台设计与实现.zip

我的毕业设计作品-基于微信小程序的网络电台的设计与实现。 # 毕业设计-基于微信小程序的网络电台设计与实现 本毕业设计作品聚焦于移动音频服务的轻量化与便捷化需求,设计并实现了一款基于微信小程序的网络电台系统,旨在为用户打造无需额外安装应用、即开即用的音频收听体验,同时融合了个性化推荐、互动分享等特色功能。 系统采用“小程序前端+Spring Boot后端+云存储”的架构模式:前端基于微信小程序原生框架开发,运用WXML、WXSS与JavaScript完成界面搭建,实现了电台分类浏览、音频播放控制、收藏点赞、历史记录查看等核心功能,借助微信小程序的音频组件保证播放的稳定性;后端以Spring Boot框架构建服务接口,处理用户请求、音频资源管理与数据交互;音频文件存储于阿里云OSS对象存储,通过CDN加速提升不同地区用户的播放速度,用户数据与节目信息则存储在MySQL数据库中。 针对用户个性化需求,系统加入了基于用户收听历史的推荐算法,可智能推送同类优质电台节目。此外,设计了节目评论、分享至微信好友/朋友圈等互动功能,增强用户粘性。该网络电台小程序兼顾了操作的简洁性与功能的丰富性,既利用微信生态降低了用户使用门槛,也在毕业设计中充分锻炼了前后端分离开发、云服务应用与音频流媒体处理的综合能力,是一次从需求分析到产品落地的完整工程实践。

2025-12-21

毕业设计-基于Python的房产交易数据爬虫系统.zip

这是一个作者毕业设计的爬虫,爬取58同城、赶集网、链家、安居客、我爱我家网站的房价交易数据。 # 毕业设计-基于Python的房产交易数据爬虫系统 本毕业设计项目聚焦于房产交易数据的高效采集与初步处理,针对58同城、赶集网、链家、安居客、我爱我家五大房产平台,开发了一套定制化的网络爬虫系统,旨在解决房产数据分散、人工采集效率低、信息同步不及时的问题,为房产市场分析提供数据支撑。 系统以Python为核心开发语言,采用多库协同架构:基于Requests库构建HTTP请求模块,实现对目标网站的页面访问与数据抓取;借助BeautifulSoup和XPath完成页面解析,精准提取房源单价、面积、户型、朝向、地理位置、挂牌时间等核心字段;通过Scrapy框架实现多线程异步爬取,大幅提升数据采集效率;同时加入User-Agent随机切换、IP代理池轮换等反爬策略,规避网站的访问限制。 针对不同平台的页面结构差异,系统设计了差异化的解析规则,确保数据采集的完整性与准确性。采集到的数据经清洗去重后,存储至MySQL数据库,支持按区域、价格、户型等维度的快速查询。该爬虫系统单日可稳定采集上万条有效房源数据,不仅为房产市场趋势分析提供了数据基础,也在毕业设计中充分锻炼了网络协议分析、数据解析、反爬策略设计与数据库应用的综合能力。

2025-12-21

毕业设计-基于微信小程序的共享雨伞租借系统.zip

毕业设计-基于微信小程序的共享雨伞租借系统 # 毕业设计-基于微信小程序的共享雨伞租借系统 本基于微信小程序的共享雨伞租借系统,针对校园、商圈等场景中临时用伞需求与雨伞资源闲置的矛盾设计开发,是集便捷租借、智能管理、数据监控于一体的轻量化共享服务系统,也是毕业设计中融合前端开发、后端架构与物联网技术的实践探索。 系统采用“小程序前端+Python后端+云数据库”的架构模式:前端基于微信小程序原生框架开发,实现用户注册登录、附近伞点查询、扫码借还、订单查询等核心功能,利用微信定位API精准展示周边伞点位置与雨伞库存;后端以Flask框架搭建服务接口,处理用户请求与业务逻辑;数据存储采用腾讯云MySQL数据库,实时记录用户信息、租借订单、伞具状态等数据。同时,伞点配备NFC标签与单片机控制的智能锁具,实现扫码解锁、归还关锁的自动化操作。 系统兼顾用户与管理员双端需求,用户端操作简洁易上手,管理员端可通过后台查看伞具分布、租借率、故障上报等数据,便于资源调度与维护。该系统不仅解决了户外临时用伞的痛点,还通过轻量化架构降低了共享服务的开发与运营成本,在毕业设计中充分体现了移动开发、云服务与物联网技术的融合应用,也锻炼了需求分析、系统设计与项目落地的综合能力。

2025-12-21

一个精致的数控电源小项目(毕业设计).zip

一个精致的数控电源小项目(毕业设计) # 一个精致的数控电源小项目(毕业设计) 本数控电源项目是针对传统模拟电源调节精度低、操作繁琐、功能单一等问题设计的小型智能电源系统,作为毕业设计,既兼顾了电子技术、嵌入式开发的核心知识点,又实现了实用化的功能落地。项目以STM32F103C8T6单片机为控制核心,搭配数模转换芯片DAC0832和运算放大器LM358构建电压输出电路,通过霍尔电流传感器实现电流检测,形成“采集-计算-输出”的闭环控制体系。 硬件层面,项目采用模块化设计,将电源模块、控制模块、显示模块、按键输入模块分层布局,既简化了电路调试,也提升了整体集成度。软件部分基于Keil5开发环境,用C语言编写了主控制程序,实现了0-30V连续可调电压输出、0-5A电流限制、数字按键设定参数、LCD1602实时显示电压电流值等核心功能,同时加入过压、过流保护机制,保障系统安全运行。 相较于传统电源,该数控电源的电压调节精度可达0.01V,电流检测误差小于0.02A,且支持参数记忆与一键复位,操作便捷性大幅提升。整个项目体积小巧、功耗低,既满足了实验室小型电子设备的供电需求,也通过软硬件的协同设计,充分锻炼了嵌入式系统开发、电路设计与调试、抗干扰处理等实践能力,是一次从理论到实际的完整工程训练。 介绍 毕业设计的一个电源,BUCK-BOOST架构,所有的资料都在里面了,硬件软件和结构,可以实现上位机控制同步升降压,并且 具备3S锂电池充放电管理,功能没完全测试,程序部分功能也还没有实现,请酌情使用,若有大佬愿意继续开发可以联系我,后 期有空会出第二版本,这一版本请大家尽量不要直接打板。 软件架构 查看内部 安装教程 查看内部 使用说明 查看内部 参与贡献 查看内部 一些展示图

2025-12-21

本科毕设(已开源) -《本科毕业设计综合信息管理系统》.zip

本科毕设(已开源) -《本科毕业设计综合信息管理系统》 商洛学院毕业论文选题系统说明 分支 目前已存在分支介绍: 分支 负责人 负责人邮箱 版本 分支内容 boot 郑其龙 zhengql@senthink.com 2.0.0 主分支,线上环境代 码,最新最完整的代 码分支 zql_select 郑其龙 zhengql@senthink.com 1.0.1 备份分支,保存了第 一个版本的全部代码 ssm 郑其龙 zhengql@senthink.com 1.0.0 备份分支,以ssm框 架为基础的半成品分 支( 已停止维护 ) 本项目涉及到多个年级多人维护,当出现版本迭代时,将上一个版本进行独立分支保存。 分支命名:姓名_select(zql_select) 说明 本项目是我在2017年的本科毕业设计,基于本科高校实际情况的毕业论文选题信息管理系统 修改日期 修改人 修改人邮箱 版本 修改日志 2018.03.05 郑其龙 zhengql@senthink.com 1.0.0 初始化说明文档 2018.04.12 郑其龙 zhengql@senthink.com 1.0.1 添加部分模块说明 目录 ● 全局说明 ● 论文介绍 ● 项目技术 ● 项目模块 1 . 登录 2 . bug管理 3 . 个人信息 4 . 首页 5 . 专业系别 6 . 学生 7 . 教师 8 . 论文 9 . 选题 1 0 . 历届题目 1 1 . 统计报表 1 2 . 成绩上传 1 3 . 流程控制 1 4 . 成绩比例 1 5 . 在线预览 1 6 . 注销 ● 数据库设计 1 . 用户表 2 . 论文题目表 3 . 选题记录表 4 . 系别表 5 . 学生表 6 . 流程控制表 7 . 成绩比例表 8 . bug记录表 *** ## 全局说明 ● 进度说明: [image] ● 项目git地

2025-12-21

毕业设计建筑材料管理-基于SSM框架的仓库管理系统.zip

毕业设计建筑材料管理-基于SSM框架的仓库管理系统 基于SSM框架的仓库管理系统 功能 ● 系统操作权限管理。系统提供基本的登入登出功能,同时系统包含两个角色:系统超级管理员和普通管理员,超级管理员具 有最高的操作权限,而普通管理员仅具有最基本的操作权限,而且仅能操作自己被指派的仓库。 ● 请求URL鉴权。对于系统使用者登陆后进行操作发送请求的URL,后台会根据当前用户的角色判断是否拥有请求该URL的 权限。 ● 基础数据信息管理。对包括:货物信息、供应商信息、客户信息、仓库信息在内的基础数据信息进行管理,提供的操作有: 添加、删除、修改、条件查询、导出为Excel和到从Excel导入。 ● 仓库管理员管理。对仓库管理员信息CRUD操作,或者为指定的仓库管理员指派所管理的仓库。上述中的仓库管理员可以以 普通管理员身份登陆到系统。 ● 库存信息管理。对库存信息的CRUD操作,导入导出操作,同时查询的时候可以根据仓库以及商品ID等信息进行多条件查 询。 ● 基本仓库事务操作。执行货物的入库与出库操作。 ● 系统登陆日志查询。超级管理员可以查询某一用户在特定时间段内的系统登陆日志。 ● 系统操作日志查询。超级管理员可以查询某一用户在特定时间段内对系统进行操作的操作记录。、 ● 密码修改。 使用到的框架和库 ● Apache POI ● MyBatis ● Spring Framework ● Spring MVC ● Apache Shiro ● Ehcache ● Apache Commons ● Log4j ● Slf4j ● Jackson ● C3P0 ● Junit ● MySQL-Connector ● jQuery ● Bootstrap 数据库关系图 [image] 部分截图 [image] [image] [image] [image] [image] [im

2025-12-21

基于DirectX11开发的GPU的流体,流体模拟算法采用Position Based Fluid .zip

毕业设计-流体模拟 FluidSimulation-Engine 这是我的毕业设计项目,基于DirectX11开发的GPU的流体,流体模拟算法采用Position Based Fluid。 [image] 项目概况: 环境:VS2022 语言: ● C++14/17 ● HLSL Shader Model 5.0 目前项目使用了下述代码库或文件: ● X_Jun的DirectX11 With Windows SDK教程:MKXJun/DirectX11-With-Windows-SDK: 现代DX11系列教程:使用Windows SDK(C++)开发Direct3D 11.x (github.com) ● ocornut/imgui 构建项目 ● cmake构建 mkdir build cd build cmake .. ● xmake构建 xmake -y xmake run 博客 DirectX11:Position Based Fluid

2025-12-21

以前做毕业设计时,使用Python做的一个简单的Blog..zip

以前做毕业设计时,使用Python做的一个简单的Blog. SpiderBoy 以前做毕业设计时,使用Python做的一个简单的Blog. ### 基于Python的简易Blog系统设计与实现 做毕业设计时用Python开发简易Blog是很经典的选题,既可以锻炼Web开发能力,也能涵盖数据库、前后端交互等核心知识点。下面我将从**技术选型、核心功能设计、代码实现**三个维度,给出一个可落地的简易Blog系统方案(以Flask框架为例,轻量易上手,适合毕业设计)。 --- ## 一、技术选型 ### 1. 后端 - **Web框架**:Flask(轻量级,学习成本低,适合小型项目) - **数据库**:SQLite(无需额外安装,开发阶段便捷;也可替换为MySQL/PostgreSQL) - **ORM**:SQLAlchemy(简化数据库操作,避免手写SQL) - **用户认证**:Flask-Login(处理用户登录、登出、会话管理) - **密码加密**:Werkzeug(内置密码哈希函数,保障安全) ### 2. 前端 - **模板引擎**:Jinja2(Flask内置,与Python无缝集成) - **样式**:Bootstrap(快速搭建响应式页面,减少CSS工作量) - **JavaScript**:原生JS(实现简单的交互,如表单验证) --- ## 二、核心功能设计 一个简易Blog至少包含以下功能模块: 1. **用户模块**:注册、登录、登出、个人信息管理 2. **文章模块**:发布、编辑、删除、查看文章,分类/标签管理 3. **评论模块**:文章评论、回复(可选,简化版可只做展示) 4. **首页展示**:最新文章列表、分类导航、热门文章推荐(可选) --- ## 三、代码实现 ### 1. 项目结构 ``` spiderboy

2025-12-21

基于AFLFast对能量分配策略改进的个人毕业设计.zip

基于AFLFast对能量分配策略改进的个人毕业设计 Mix Schedule #以下为AFLFast原公告(中文为添加) 背景: 经本人测试各个算法(EXPLOIT/AFL、EXPLORE、COE、LINEAR、QUAD、FAST)的结果进行分析发现各个策略有各个的优 势,根据之前的实验,以及结合各能量分配策略的能量分配方式,产生了一些想法,或许不同的策略适合不同的被测试对象?那 么是否可以让每个能量分配策略都有机会进行实践呢?于是设计了一款能量分配方式:设计一个转换器,根据一定的策略改变能 量分配策略,我将这样的策略称之为Mix Schedule,混合策略。 Mix Schedule中的核心策略选择: 根据测试,在我的测试结果中前三位的是FAST、COE、QUAD,我试过将每个策略都轮转的方式,反而降低了效率,所以仅采 用这三个策略。 现有策略分析: 1 . Exponential Schedule (FAST) p(i)=min⁡((α(i)/β)*(2^s(i) /f(i) ),M) 其中α(i)是算法中assignEnergy的实现。s(i)表示种子ti之前从队列T中选到的次数。f(i)表示执行状态为i的生成的输入的数量。M则 是能量的上限值。其中β>1。这其实是对COE的扩展,即当f(i)>μ时不再完全不对ti进行Fuzz处理。s (i)放在指数部分:期望的种子 队列T本质上需要一个维护一个探索低密度区的输入序列,所以如果s(i)越大,直接含义上表示从输入队列中选择ti输入的次数越 多,也就是说状态i达到的路径数越少,状态i处于低密度区,所以放在指数上,ti选取越多,就给它高能量值。 1 . Cut-Off Exponential (COE) 当 f(i)>μ P(i)=0 其他情况 p(i)=min⁡((α(i)/β)*2^s(i) ,M) 其中μ=∑i∈

2025-12-21

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除