毕设:面向领域快速移植的高精度分词系统.zip
毕设:面向领域快速移植的高精度分词系统
项目简介
本项目为本人毕业设计代码部分,后续会提供在线体验网站。
仓库构成
本仓库共包括三部分代码。
Build_JAR
该部分为核心代码,需要编译成jar包供其他两个项目使用(编译好的jar包未提供,data文件夹未提供)。
编译环境
● 编码:UTF-8
● IDE:Eclipse Oxygen.3a
● 语言:Java
● 框架:无
● 测试:JUnit 4
● 代码规范:Google Java Format
● (平台:Mac)
建议输出
项目名称“右键” -- Export -- 选择“JAR File” -- (一切默认) -- Finish。
Build_Desktop
该部分为JavaFX写的界面程序,需要先导入上一个项目中编译好的jar包。
编程环境
在上一个项目基础上,增加:
● JavaFX版本:2.0
打包
该项目需要使用Ant打包成应用程序。
Build_Web
该部分为RESTFul风格的展示网站,功能与上一个项目相似,后期会发布链接供大家测试。
编程环境
在第一个项目基础上,增加:
● RESTful Web Services:Jersey 2.2.7
编译
项目名称“右键” -- Export -- 选择“WAR File” -- (一切默认) -- Finish。
测试结果
| 语料 | P | R | F | | :-: | - | - | - | |《人民日报》|0.98686|0.97233|0.97954| |微博|0.98870|0.96147|0.97489| |PKU|0.99000|
0.96473|0.97719| |MSR|0.94709|0.97068|0.95874| |切分歧义|0.82696|0.93071|0.87577| |特定领域1|0.97645|0.99061|
基于SpringBoot2流程监控的本科毕业设计管理系统.zip
毕业设计管理系统
基于SpringBoot2流程监控的本科毕业设计管理系统
技术栈
1 . SpringBoot2 JPA JWT
2 . LayUI 考虑Vue 和 iview
3 . PostgreSQL Redis
需求
目录
├── doc 文档
├── gradle gradle目录
├── src 源码
└── static 静态文件源码
脚本
reconfig.sh 修改配置文件application.yml reboot.sh 更新镜像重启Docker容器
截图
[image]
压测情况: [image]
# 基于流程监控的本科毕业设计管理系统设计与实现
## 一、系统概述
### 1.1 项目背景与意义
本科毕业设计是高校人才培养的重要环节,其流程涵盖**选题、开题、中期检查、论文提交、评阅、答辩、成绩录入**等多个节点,涉及学生、指导教师、评阅教师、教学管理员等多类角色。传统的毕业设计管理多依赖线下表格、邮件或简单的线上系统,存在**流程不透明、进度监控困难、信息同步不及时、审核效率低**等问题。
本系统基于**流程监控**核心思想,采用SpringBoot2、Vue+iView(可选LayUI)、PostgreSQL、Redis等技术构建,实现毕业设计全流程的数字化、自动化管理,通过实时跟踪各节点进度、设置超时提醒、统计分析流程数据,提升毕业设计管理的效率和规范性。
Matlab-Prediction-NN-毕业设计:基于改进神经网络的风电功率预测系统.zip
毕业设计:基于改进神经网络的风电功率预测系统
Matlab_Prediction_NN-毕业设计:基于改进神经网络的风电功率预测系统
# 基于改进神经网络的风电功率预测系统设计与实现(Matlab版)
## 一、课题研究背景与意义
风电作为清洁可再生能源的重要组成部分,其装机容量和发电量占比持续提升,但风电功率具有**强随机性、波动性和间歇性**的特点,这给电力系统的调度、稳定运行和电网消纳带来了巨大挑战。精准的风电功率预测能够有效降低风电并网对电网的冲击,提高风电利用率,对风电产业的可持续发展具有重要的现实意义。
传统的神经网络(如BP神经网络)在风电功率预测中存在收敛速度慢、易陷入局部最优、泛化能力不足等问题。本课题通过对神经网络的结构、训练算法或融合策略进行改进,构建高精度的风电功率预测模型,并基于Matlab开发一套集数据预处理、模型训练、预测分析、结果可视化于一体的风电功率预测系统。
## 二、系统总体设计
### 2.1 系统架构
系统采用**模块化设计**,分为五大核心模块,各模块相互独立又协同工作,整体架构如下:
```
风电功率预测系统
├── 数据预处理模块:数据加载、清洗、归一化、特征选择
├── 改进神经网络模型模块:改进算法实现、模型构建与训练
├── 预测模块:实时预测、多步预测
├── 结果分析模块:误差计算、对比分析
└── 可视化模块:数据曲线、预测结果、误差分布展示
```
### 2.2 技术路线
1. **数据采集**:选取某风电场的历史监测数据(风速、风向、温度、湿度、气压、实际风电功率等)。
2. **数据预处理**:处理缺失值、异常值,通过归一化消除量纲影响,采用相关性分析或主成分分析(PCA)进行特征选择。
3. **模型改进**:针对传统神经网络的不足,选择一种或多种改进策略(如结合粒子群优化(PSO)的BP神
基于php的仿微博系统设计-毕业设计.zip
基于php的仿微博系统设计-毕业设计
# 基于PHP的仿微博系统设计-毕业设计介绍
在社交媒体快速发展的时代,微博作为轻量级的社会化媒体平台,以“短、平、快”的信息传播模式成为大众分享生活、获取资讯的重要载体。其核心的信息发布、社交互动、关注转发等功能,也成为高校计算机专业毕业设计中考察Web开发能力的经典场景。本次毕业设计以微博的核心业务逻辑为参考,采用**PHP**作为核心开发语言,结合MySQL数据库与前端Web技术,设计并实现了一套功能完整、轻量级的仿微博社交系统。既还原了微博的核心社交体验,也完成了对PHP Web开发技术栈的综合应用与软件工程全流程的实践探索。
## 一、系统开发背景与意义
随着互联网社交形态的不断演进,用户对即时性、轻量化的社交分享需求日益凸显。微博凭借140字短内容发布、关注互动、话题传播等核心功能,构建了高效的信息传播生态,成为大众社交的重要载体。而在技术层面,PHP作为开源、跨平台、入门门槛低且开发效率高的服务器端脚本语言,凭借丰富的扩展库和成熟的生态,成为中小型Web应用开发的主流选择,尤其适合社交类轻应用的快速构建。
在高校毕业设计的场景下,仿微博系统的开发具有重要的实践价值:一方面,系统涵盖了用户认证、数据存储、异步交互、社交逻辑等Web开发的核心场景,能够全面检验开发者对PHP语法、数据库设计、前后端交互等知识的掌握程度;另一方面,通过还原微博的核心业务流程,开发者可深入理解社交类系统的设计思路,锻炼需求分析、系统设计、编码实现和测试部署的全流程能力,为后续从事Web开发工作奠定坚实基础。同时,该系统的实现也为小型社交平台的开发提供了可参考的技术方案。
## 二、系统核心技术栈解析
本系统采用经典的LAMP(Linux+Apache+MySQL+PHP)技术架构,搭配前端主流技术实现交互,技术选型贴合中小型Web应用的开发
springMVC-servlet 美食网站-毕业设计参考.zip
springMVC-servlet 美食网站-毕业设计参考
# SpringMVC+Servlet美食网站毕业设计介绍
正值移动互联网与餐饮数字化融合发展的初期,大众对美食的需求从单纯的线下味觉体验,逐步转向“线上获取资讯、学习菜谱、分享美食体验”的多元化需求。彼时市面上的美食类网站虽有一定数量,但部分存在功能单一、界面交互生硬、数据更新不及时等问题,难以满足用户的综合需求。本次毕业设计以大众对美食信息的获取与互动需求为出发点,采用**SpringMVC+Servlet**为核心技术架构,结合传统Java Web开发技术,设计并实现了一套集美食资讯、菜谱分享、食材查询于一体的美食网站,既满足了普通用户的美食相关需求,也完成了对Java Web核心开发技术的综合应用与实践验证。
## 一、系统开发背景与意义
中国在线餐饮市场规模突破4000亿元,数字化餐饮服务逐渐融入大众生活,用户对线上美食网站的需求不再局限于餐厅推荐,而是延伸到家常菜谱学习、食材搭配指导、美食经验分享等多个维度。
在技术层面,传统纯Servlet开发的Web应用存在代码耦合度高、请求处理流程管理繁琐、视图与业务逻辑分离不清晰等问题,而2018年已成为Java Web开发主流的SpringMVC框架,基于MVC设计模式可与Servlet无缝集成——既保留了Servlet对HTTP Request/Response的底层处理能力,又通过SpringMVC的DispatcherServlet实现了请求的统一分发与全流程管理,大幅降低了开发复杂度。
本系统的开发,一方面为用户提供了一站式美食信息平台,解决了当时美食类网站功能分散、交互体验不佳的痛点;另一方面,作为毕业设计,系统开发涵盖了Servlet底层开发、SpringMVC框架应用、数据库设计与操作等核心环节,有效检验了大学阶段所学的Java Web
Spring+SpringMVC+MyBatis+Mysql 销售管理系统 毕业设计.zip
Spring+SpringMVC+MyBatis+Mysql 销售管理系统 毕业设计
# Spring+SpringMVC+MyBatis+MySQL销售管理系统毕业设计介绍
在数字化经济高速发展的当下,企业销售业务的规模化、复杂化对管理效率和数据处理能力提出了更高要求,传统人工销售管理模式存在效率低下、数据易出错、决策缺乏数据支撑等问题。本次毕业设计以企业销售管理的实际需求为出发点,采用**Spring+SpringMVC+MyBatis(SSM)** 开源框架结合**MySQL**数据库,设计并实现了一套高效、可扩展、易维护的销售管理系统,旨在为企业销售业务的全流程管理提供数字化解决方案,同时也完成了对Java Web开发技术栈的综合应用与实践探索。
## 一、系统开发背景与意义
随着市场竞争的加剧,企业需要对销售订单、客户信息、商品库存、销售统计等核心业务进行精细化管理。传统的Excel表格、纸质记录等管理方式,不仅难以实现数据的实时共享与同步,也无法快速生成多维度的销售分析报表,制约了企业的市场响应速度和决策效率。
本系统基于SSM框架开发,充分利用Spring的IoC(控制反转)和AOP(面向切面编程)特性实现组件解耦与业务逻辑的模块化,通过SpringMVC完成请求分发、视图解析和前后端交互,借助MyBatis实现灵活的数据库操作,搭配MySQL高性能的关系型数据库存储业务数据。系统的实现不仅能解决企业销售管理的实际痛点,提升管理效率,也使开发者深入掌握了Java EE企业级开发的核心技术栈,锻炼了需求分析、系统设计、编码实现和测试部署的全流程开发能力,为后续从事软件开发工作奠定了坚实基础。
## 二、系统核心技术栈解析
1. **Spring框架**:作为系统的核心容器,负责对象的创建、依赖注入和生命周期管理,通过AOP实现日志记录、事务管理等横切关注
毕业设计 基于深度学习的视觉问答.zip
毕业设计: 基于深度学习的视觉问答
毕业设计
对于视觉问答(VQA)的研究具有深刻的学术意义和广阔的应用前景。目前,视觉问答模型性能提升的重点在于图像特征的提
取,文本特征的提取,attention权重的计算和图像特征与文本特征融合的方式这4个方面。本文主要针对attention权重的计算和图
像特征与文本特征融合这两个方面,以及其他细节方面的地方相对于前人的模型做出了改进。本文的主要工作在于本文使用
open-ended模式,答案的准确率采用分数累积,而不是一般的多项选择。本文采用CSF模块(包括CSF_A和CSF_B)不仅对
spatial-wise进行了权重计算,还对channel-wise进行了权重计算。本文采用MFB模块和ResNet152 FC层之前的tensor来结合
LSTM的输出来计算每个区域的权重,而不是直接把image feature和question feature结合本文采用SigMoid来计算最后的分布,
而不是一般的softmax(实验部分会有对比两者的差异)。
总体模型的架构
基于Activiti流程监控的毕业设计管理系统.zip
基于Activiti流程监控的毕业设计管理系统
# 基于Activiti流程监控的毕业设计管理系统
本科毕业设计是高校人才培养体系中衔接理论教学与实践应用的关键环节,其管理流程涵盖选题、开题、中期检查、论文提交、评阅、答辩及成绩核定等多个核心节点,涉及学生、指导教师、评阅教师、教学管理员等多类角色,流程的规范性与进度的可控性直接影响毕业设计的质量与教学管理效率。传统的毕业设计管理模式多依赖线下纸质审批、邮件沟通或简单的线上表单系统,存在流程节点不透明、进度监控滞后、审核流转效率低、异常情况处理不及时等问题,难以满足高校规模化、精细化的教学管理需求。
基于Activiti流程监控的毕业设计管理系统,以**Activiti工作流引擎**为核心技术支撑,结合SpringBoot、Vue、PostgreSQL、Redis等主流技术栈,构建了一套全流程数字化、自动化的毕业设计管理平台。该系统将毕业设计的全流程抽象为可配置的工作流模型,通过Activiti引擎实现流程节点的定义、流转规则的配置以及流程实例的生命周期管理,打破了传统管理模式中流程固化的局限,支持教学管理员根据不同专业、不同年级的培养要求,灵活调整流程节点的数量、顺序、审核规则及时间节点。
在流程监控层面,系统依托Activiti的流程实例跟踪能力,实现了对每个学生毕业设计流程的**实时可视化监控**:不仅能直观展示各节点的完成状态、处理人、处理时间等关键信息,还能通过自定义的超时预警规则,对超期未完成的节点自动触发提醒(系统消息、邮件等),帮助教学管理员及时发现流程卡顿问题并介入处理。同时,系统基于Activiti的历史流程数据,提供了多维度的统计分析功能,包括各流程节点的平均处理时长、不同教师的审核效率、各专业的流程完成率等,为教学管理决策提供了数据支撑。
系统还围绕不同角色的核心需求设计了精细化的功能模块:学
基于SpringBoot+Vue前后端分离的若依Java快速开发框架-财务管理系统-毕业设计.zip
基于SpringBoot+Vue前后端分离的若依Java快速开发框架-财务管理系统-毕业设计
帆楼财务管理系统
基于SpringBoot+Vue前后端分离的若依Java快速开发框架
项目简介
[comment]: <> (若依是一套全部开源的快速开发平台,毫无保留给个人及企业免费使用。)
● 前端采用Vue、Element UI。
● 后端采用Spring Boot、Spring Security、Redis & Jwt。
● 权限认证使用Jwt,支持多终端认证系统。
● 支持加载动态权限菜单,多方式轻松权限控制。
● 流程引擎使用Flowable,包含表单配置和流程定义。
内置功能
1 . 合同管理:项目从合同开始,此模块包括合同基础信息的维护和合同文件的上传下载与提交申请。
2 . 发票管理:资金流动靠发票作为凭证,对员工提交的发票信息进行核查并录入,添加合同收入发票。
3 . 报销管理:员工申请报销,提交发票并申请报销流程。
4 . 工资管理:记录每月员工的工资,包括五险一金和奖惩。
5 . 采购管理:申请报销项目采购,提交发票并申请报销流程。
6 . 项目成本:对正在进行或已完成的项目进行成本核算,核算内容有账期总收入、人员成本、采购成本、其他支出和总计利
润。
7 . 项目管理:对项目信息进行维护。
8 . 工时管理:根据项目添加员工的工时信息,为项目人员成本核算提供数据。
9 . 员工管理:一个员工对应一个用户,一个员工只属于一个部门。
1 0 . 用户管理:用户是系统操作者,该功能主要完成系统用户配置。
1 1 . 流程管理:完成合同申请、报销申请、采购申请等需要审核的任务。
1 2 . 部门管理:配置系统组织机构(公司、部门、小组),树结构展现支持数据权限。
1 3 . 岗位管理:配置系统用户所属担任职务。
1 4 . 菜单管理:配置系统菜单,操作权限,
毕设参考基于flask+sqlite+html+推荐算法二手好房网站-本地数据库.zip
房源推荐系统使用说明文档
1. 项目概述
1.1 项目简介
本项目是一个基于Flask框架开发的房源推荐系统,主要功能包括房源展示、搜索、用户管理和个性化推荐等。系统采用响应式设计,支持多设备访问,提供了良好的用户体验。
1.2 技术栈
后端框架: Flask 2.0+
数据库: SQLite
ORM框架: SQLAlchemy
前端技术: HTML5, CSS3, JavaScript, Bootstrap 4
数据可视化: ECharts
推荐算法: 基于用户的协同过滤(皮尔逊相关系数)
2. 环境搭建
2.1 系统要求
Python 3.7+
Windows/macOS/Linux操作系统
2.2 安装步骤
克隆项目代码
git clone <项目仓库地址>
cd <项目目录>
创建虚拟环境
# Windows
python -m venv venv
venv\Scripts\activate
# macOS/Linux
python3 -m venv venv
source venv/bin/activate
安装依赖包
pip install -r requirements.txt
3. 运行项目
3.1 生成模拟数据
系统提供了模拟数据生成脚本,可以快速生成测试数据:
python generate_fake_data.py
生成的数据包括:
80个用户数据
400个房源数据
200条推荐记录数据
3.2 启动服务
python app.py
服务将在 http://127.0.0.1:5000 启动。
4. 功能介绍
4.1 首页功能
房源概览: 展示房源总数量
最新房源: 展示最近发布的6个房源
热门房源: 展示浏览量最高的4个房源
搜索功能: 支持按地区和户型搜索房源
4.2 房源列表页
最新房源列表: 按发布时间倒序展示所有房源,支持分页
Vue+ElementUI+Flask+MysqlSqlite+Yolov5 技术栈的智慧农场系统架构与实现方案.zip
基于多技术栈的智慧农场系统设计与实现
智慧农场系统是现代农业与信息技术结合的典型应用,通过整合物联网、人工智能和数据管理技术,实现农业生产的智能化管理。以下将详细介绍基于 Vue+ElementUI+Flask+Mysql/Sqlite+Yolov5 技术栈的智慧农场系统架构与实现方案。
系统整体架构设计
智慧农场系统采用前后端分离架构,分为四个核心层:
前端展示层:Vue.js + ElementUI
后端服务层:Flask 框架
数据存储层:MySQL/SQLite 数据库
AI 模型层:Yolov5 (PyTorch) 图像识别模型
各层通过 RESTful API 接口通信,形成完整的技术闭环。
前端实现:Vue+ElementUI
系统界面模块设计
前端采用 Vue 组件化开发,结合 ElementUI 组件库构建高效管理界面,主要模块包括:
仪表盘模块:实时展示农场环境数据(温湿度、土壤墒情、光照等)
作物监控模块:基于图像识别的作物生长状态可视化
设备控制模块:灌溉、通风、施肥等设备的远程操控面板
数据分析模块:历史数据统计图表(ECharts 集成)
用户管理模块:角色权限控制、操作日志记录
基于pyqt5的人脸表情识别软件设计与实现
基于PyQt5的人脸表情识别软件的设计与实现,可按以下步骤进行:
### 系统架构设计
1. **用户界面层**:PyQt5构建图形界面,包含视频显示区、控制面板和结果展示区
2. **核心功能层**:
- 人脸检测模块:OpenCV人脸检测器定位面部区域
- 表情识别模型:预训练的深度学习模型(如ResNet)分类表情
3. **数据处理层**:视频流捕获、帧处理和结果存储
### 核心功能实现
### 关键技术要点
1. **人脸检测**:使用OpenCV的Haar级联分类器进行实时人脸定位
2. **表情识别模型**:基于FER2013数据集训练的CNN模型,可识别7种基本表情
3. **多线程处理**:视频捕获和处理放在独立线程中,避免UI卡顿
4. **界面设计**:简洁直观的用户界面,包含视频显示区和表情结果展示
### 实现步骤建议
1. 安装依赖库:`pip install PyQt5 opencv-python tensorflow numpy`
2. 准备预训练模型:可使用Keras训练或下载公开模型
3. 运行主程序,点击"开始"按钮启动表情识别
4. 系统会实时检测人脸并显示识别的表情结果
该设计支持实时视频流处理,界面友好,扩展性强,可进一步添加表情统计、历史记录等功能。
基于Spring+SpringMVC+Hibernate分层的在线招标投标小系统.zip
在线招标Demo
1. Demo简介
本Demo是一个基于Spring+SpringMVC+Hibernate分层的在线招标/投标小系统。它利用MySQL进行数据持久化,并通过Jsp进行前端显示。系统实现了服务商发布招标、企业投标以及服务商选择中标的核心功能。
[image](此处应插入系统架构图或流程图,但文本格式无法直接展示,请在实际文档中添加)
1.1 实现技术
Spring:用于依赖注入和面向切面的编程,简化了企业级应用的开发。
SpringMVC:作为模型-视图-控制器(MVC)框架,处理Web应用的各种需求。
Hibernate:对象关系映射(ORM)框架,简化了数据库操作。
Jsp:用于动态生成HTML页面,作为前端显示技术。
MySQL:关系型数据库管理系统,存储系统数据。
Servlet:Java Web应用程序的基本组件,处理客户端请求并生成响应。
1.2 数据库
数据库表创建:MySQL表采用Hibernate自动创建。首次运行时,Hibernate会根据实体类自动生成数据库表。为了防止重复建表,建议在建表成功后注释掉相关代码。
表关系:以下是系统中主要表的关系描述(具体表名和字段应根据实际设计调整):
招标信息表:存储招标项目的详细信息,如项目名称、描述、截止日期等。
投标信息表:存储投标企业的详细信息,如企业名称、投标价格、投标时间等。
用户表:存储系统用户的信息,如用户名、密码、角色(服务商或企业)等。
中标信息表:存储中标的详细信息,如中标企业、中标价格、中标时间等。
这些表之间通过外键关联,如招标信息表和投标信息表通过招标项目ID关联,投标信息表和中标信息表通过投标企业ID关联。
注意:以上内容仅为Demo的简要概述。在实际开发中,还需要考虑更多的细节,如安全性、性能优化、用户体验等。此外,根据具体需求,还可以扩展更多功能,如招标文件的在线查
基于SSM整合,MySQL数据持久化的医院人事管理系统.zip
医院人事管理系统
1. Demo简介
本demo基于SSM整合,MySQL数据持久化的医院人事管理系统,实现一般人事管理的功能,包括:请假、审批、人员管理等,
分为admin管理员登入和员工登入。
[image]
1.1 技术应用
● Spring
● SpringMVC
● MyBatis plus
● bootstrap
● Jsp
● MySQL
1.2 数据库
[image]
2. Demo演示
2.1 医院职员登入
[image]
个人信息
[image]
考勤信息
[image]
加班信息
[image]
2.2 管理员登入
员工管理
[image]
考勤管理
[image]
部门管理
[image]
3. 总结
简单的基于SSM整合的CRUD小项目,需要的同学拿去改改。
基于SSM(Spring + SpringMVC + Mybatis)框架整合的流浪猫狗管理救助系统.zip
基于SSM(Spring + SpringMVC + Mybatis)框架整合的流浪猫狗管理救助系统
流浪猫狗管理救助系统 Demo 简介
这是一个基于SSM(Spring + SpringMVC + Mybatis)框架整合的流浪猫狗管理救助系统,旨在提供一个平台,方便用户领养流浪猫狗,同时为管理员提供便捷的管理功能。系统分为前后端两个部分:
前端: 用户领养猫狗界面,提供友好的交互体验,方便用户浏览和领养流浪猫狗。
后端: 管理员管理页面,提供强大的管理功能,方便管理员对流浪猫狗信息、用户信息、领养信息等进行管理。
技术应用
该系统主要应用了以下技术:
Spring: 用于构建系统的整体架构,提供IoC(控制反转)和AOP(面向切面编程)等核心功能。
SpringMVC: 用于构建Web应用程序,处理用户请求,并返回相应的视图。
Mybatis: 用于数据库访问,提供与数据库交互的持久层。
MySQL: 关系型数据库管理系统,用于存储系统数据。
JSP: Java Server Pages,用于创建动态网页。
Pagehelper: Mybatis分页插件,用于简化分页操作。
数据库
系统采用MySQL数据库,设计了多个数据表来存储流浪猫狗信息、用户信息、领养信息等数据。数据库设计应考虑数据完整性、一致性和安全性。
登录功能
系统提供两种登录方式:
管理员后台登录: 管理员通过后台登录系统,进行流浪猫狗信息管理、用户信息管理、领养信息管理等操作。
用户前台登录: 用户通过前台登录系统,浏览和领养流浪猫狗。
功能模块(建议)
为了更清晰地了解系统功能,我们可以进一步细化功能模块,以下是一些建议:
前端功能模块(用户):
首页: 展示流浪猫狗信息,提供搜索、筛选功能。
猫狗详情页: 展示单个流浪猫狗的详细信息,包括照片、品种、年龄、性格等。
领养申请: 用户可以提交领养申
毕业设计-简易网盘系统.zip
分享一个简易网盘源码:基于SpringBoot + Mybatis + Thymeleaf + MySQL实现文件上传展示、下载、分享链接、重命名、删除
等基本功能。外加若上传的文件是音乐文件可一键播放实现。
简易网盘源码分享
这是一个基于 Spring Boot、MyBatis、Thymeleaf 和 MySQL 实现的简易网盘系统。该系统提供了文件上传、展示、下载、分享链接、重命名、删除等基本功能,并且支持音乐文件的一键播放。
技术栈
Spring Boot: 用于创建 Java 应用程序的快速、高效框架,简化了应用程序的配置和部署。
MyBatis: 提供了与数据库交互的持久层框架,简化了数据库操作。
Thymeleaf: 服务器端 Java 模板引擎,用于生成动态 HTML 页面,与 Spring Boot 集成良好。
MySQL: 关系型数据库管理系统,用于存储应用程序的数据。
主要功能
文件上传: 用户可以上传文件到服务器,支持多种文件类型。
文件展示: 以列表形式展示所有上传的文件,包括文件名、大小、上传时间等信息。
文件下载: 用户可以下载自己上传的文件。
分享链接: 用户可以生成文件的分享链接,其他用户可以通过链接下载文件。
文件重命名: 用户可以重命名自己上传的文件。
文件删除: 用户可以删除自己上传的文件。
音乐文件播放: 如果上传的文件是音乐文件,用户可以一键播放。
实现步骤
创建 Spring Boot 项目,添加必要的依赖项(Spring Web、MyBatis、Thymeleaf、MySQL Driver 等)。
配置 MySQL 数据源和 MyBatis 配置文件。
创建实体类(Entity)来映射数据库表结构。
创建 Mapper 接口和 XML 文件来定义数据库操作。
创建 Service 层来处
毕业设计-基于SSM整合MySQL数据持久化的房屋租赁管理系统house.zip
房屋租赁demo
1. Demo简介
基于SSM整合,MySQL数据持久化的房屋租赁管理系统。
[image]
1.1 技术应用
● Spring
● SpringMVC
● MyBatis
● MySQL
● Jsp
1.2 数据库
[image]
2. Demo演示
2.1 管理员登入
[image]
[image]
[image]
[image]
2.2 租房者登入
[image]
[image]
自动生成合同
[image]
3. 总结
简单的SSM整合的CRUD小demo,需要的同学可以拿去看看。
毕业设计-基于SpringBoot+JPA+Thymeleaf实现,MySQL数据持久化的旅游管理系统.zip
毕业设计-基于SpringBoot+JPA+Thymeleaf实现,MySQL数据持久化的旅游管理系统
旅游管理系统 Demo 简介
这个旅游管理系统是一个基于 Spring Boot、Spring Data JPA 和 Thymeleaf 的简单 CRUD 应用程序,使用 MySQL 作为数据持久化解决方案。该系统采用了前后端页面分离的设计模式,旨在提供一个基本的旅游管理平台。
1.1 技术应用
Spring Boot: 用于创建 Java 应用程序的快速、高效框架,简化了应用程序的配置和部署。
Spring Data JPA: 提供了对 JPA(Java Persistence API)的简化和抽象,使得数据库操作更加方便。
Thymeleaf: 服务器端 Java 模板引擎,用于生成动态 HTML 页面,与 Spring Boot 集成良好。
MySQL: 关系型数据库管理系统,用于存储应用程序的数据。
1.2 数据库
数据库设计是旅游管理系统的核心部分,通常包括以下几个表:
用户表 (User): 存储用户信息,如用户名、密码、联系方式等。
旅游线路表 (Tour): 存储旅游线路的详细信息,如线路名称、描述、价格、出发日期等。
订单表 (Order): 存储用户的订单信息,如用户ID、旅游线路ID、订单状态等。
评论表 (Review): 存储用户对旅游线路的评论,如用户ID、旅游线路ID、评论内容等。
2. Demo 页面演示
以下是旅游管理系统的一些关键页面演示:
首页
显示最新的旅游线路信息,包括线路名称、描述、价格、出发日期等。
提供搜索功能,用户可以根据关键词搜索旅游线路。
旅游线路详情页
显示选定旅游线路的详细信息,包括线路名称、描述、价格、出发日期、行程安排等。
提供预订按钮,用户可以点击预订旅游线路。
用户注册/登录页
提供用户注册和登录功能,用户
基于 SSM + LayUI 的汽车租赁管理系统-毕业设计.zip
基于SSM+LayUI的汽车租赁管理系统,实现汽车信息发布与用户租赁汽车的功能
汽车租赁管理demo
1. Demo简介
本demo基于SSM+LayUI的汽车租赁管理系统,实现汽车信息发布与用户租赁汽车的功能
[image]
1.1 技术实现
● Spring
● SpringMVC
● MyBatis
● LayUI
● MySQL
● Jsp
● pagehelper
1.2 数据库
汽车租赁管理 Demo 简介
这是一个基于SSM(Spring + SpringMVC + MyBatis)框架和 LayUI 前端框架的汽车租赁管理系统。该系统主要实现了汽车信息的发布以及用户在线租赁汽车的功能,旨在提供一个便捷的汽车租赁平台。
功能概述:
汽车信息发布: 管理员可以发布汽车信息,包括车型、车牌号、租金、押金、汽车状态等。
用户租赁汽车: 用户可以浏览汽车信息,选择心仪的汽车进行租赁,并在线支付租金和押金。
订单管理: 用户可以查看自己的租赁订单,包括订单状态、租赁时间、费用等信息。管理员可以管理所有订单,包括审核、处理等。
用户管理: 管理员可以管理用户信息,包括查看、修改、删除等。
技术实现:
后端:
Spring: 用于构建系统的整体架构,提供 IoC(控制反转)和 AOP(面向切面编程)等核心功能。
SpringMVC: 用于构建 Web 应用程序,处理用户请求,并返回相应的视图。
MyBatis: 用于数据库访问,提供与数据库交互的持久层。
Pagehelper: MyBatis 分页插件,用于简化分页操作。
前端:
LayUI: 一套模块化前端 UI 框架,提供丰富的 UI 组件和模块,简化前端开发。
数据库:
MySQL: 关系型数据库管理系统,用于存储系统数据。
数据库设计
数据库设计是汽车租赁管理系统的核心,需要根据系统的功能需求设计合理的数据表结构
毕业设计-基于SpringBoot+MySQL的数据库读取音乐播放的网站music.zip
音乐网站 Demo 简介
这个音乐网站 Demo 是基于 SpringBoot 框架和 MySQL 数据库构建的,主要用于音乐的播放和管理。该网站能够读取数据库中的音乐信息,并支持用户在线播放音乐。
(注:此处应为网站架构图或流程图,但文本格式无法直接展示,请在实际文档中添加)
1.1 技术应用
MySQL: 关系型数据库管理系统,用于存储音乐信息、用户信息等数据。
SpringBoot: Java 开发框架,简化了 Spring 应用的开发,提供了嵌入式服务器,使得我们可以快速构建和部署 Web 应用。
Druid: 数据库连接池技术,提供了强大的监控和扩展功能,以及良好的性能。
1.2 数据库
数据库中预设了一个管理员用户:
用户名:admin
密码:123
1.3 音乐存储
音乐文件存储方式:
本地存储: 一部分音乐文件存储在服务器本地。
云端存储: 另一部分音乐文件存储在云端(例如阿里云、腾讯云等)。具体云端存储服务的选择和配置需要根据实际情况进行。
1.4 功能模块 (可扩展)
虽然描述中没有明确提及具体功能,但一个基本的音乐网站 Demo 可能包含以下功能模块:
用户管理:
用户注册、登录、注销
用户信息查看和修改
用户权限管理(例如:管理员、普通用户)
音乐管理:
音乐上传(本地和云端)
音乐信息管理(例如:歌名、歌手、专辑、歌词等)
音乐分类管理(例如:流派、语言、地区等)
音乐搜索
音乐播放:
在线播放音乐
播放列表管理
播放模式选择(例如:单曲循环、随机播放等)
评论互动:
用户可以对音乐进行评论
评论管理
1.5 安全性考虑
在实际开发中,需要考虑以下安全性问题:
用户密码加密存储: 不能明文存储用户密码,需要使用加密算法(例如:MD5、SHA-256)进行加密。
防止SQL注入: 使用参数化查询或预编译语句防止SQL注入攻击。
文件上传
毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法 .zip
毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法。
# 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现
本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。
# 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现
本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。
代码体系分为三大核心模块:首先是**仿真环境构建模块**,基于UE4搭建包含城市建筑、植被等复杂场景的三维地图,通过AirSim的API接口编写代码实现无人机的物理参数配置、传感器(摄像头、激光雷达)数据采集与运动控制,为强化学习提供真实的交互环境;其次是**强化学习算法模块**,选用DDPG/PPO等深度强化学习算法,通过Python编写网络模型代码,设计以导航路径偏差、目标距离、环境障碍物为核心的奖励函数,实现无人机自主避障导航与动态目标的实时跟踪;最后是**训练与验证模块**,编写数据交互代码实现UE4-AirSim与PyTorch框架的通信,通过批量训练优化网络权重,并设计多场景测试代码验证算法的鲁棒性。
代码采用模块化设计,实现了仿真环境与算法逻辑的解耦,支持场景参数、算法超参数的灵活调整。实验结果表明,该代码实现的强化学习模型能让无人机在复杂场景中完成厘米级的自主导航,并对移动目标保持稳定跟踪。这套代码不仅完成了毕业设计的核心功能验证,还为无人机强化学习的工程化应用提供了可复用的实现范式。
《本科毕业设计》:三阶魔方还原机器人-基于 python 和 Arduino,实现能够还原三阶魔方的机械结构.zip
《本科毕业设计》:三阶魔方还原机器人-基于 python 和 Arduino,实现能够还原三阶魔方的机械结构
三阶魔方还原机器人
基于 python 和 Arduino,实现能够还原三阶魔方的机械结构
系统流程
1 . 通过摄像头识别魔方颜色
2 . 将识别结果转化成魔方求解算法的输入
3 . 执行魔方求解算法,得出还原操作序列
4 . 指令优化与碰撞规避处理
5 . 通过wifi将序列发给硬件控制器
6 . 硬件控制器按照序列,控制机械结构执行还原
7 . over
依赖
python 版本: 3.x
● pywifi
● pillow
● numpy
● opencv-python
$ pip install -r requirements.txt
$ python3 guiconfig.py
开发
软件部分
● [x] tkinter gui 组件的设计与开发
● [x] Camera:基于cv2.VideoCapture 构造的摄像头管理类
● [x] HoverButton:基于 tk.Button 提供可带参数事件绑定接口,并做了些许美化
● [x] ViewCanvas:**颜色数据采集与调试工具**中的面板,用于展示视频与图片
● [x] CubeFloorPlan:用于绘制并管理魔方平面展开图,存储并管理整个魔方的色块分布,并生成魔方色块序列
● [x] HSVAdjuster:**颜色数据采集与调试工具**中的面板,实时调整颜色识别中使用的 hsv 范围并保存
● [x] SampleAdjuster:**颜色数据采集与调试工具**中的面板,实时调整用于颜色识别的采样范围并保存
● [x] Console:控制台模块,用于**主控程序**运行时的状态输出
● [x] Window:Tk 窗口的封装,提供了 update_func 接口
● [x] Ca
毕设,前端微信小程序,后端python+django,在线点餐.zip
毕设,前端微信小程序,后端python+django,在线点餐
# 本科毕设:基于微信小程序+Python-Django的在线点餐系统
本本科毕业设计围绕餐饮行业数字化转型需求,设计并实现了一套以微信小程序为前端、Python-Django为后端的在线点餐系统,旨在解决传统线下点餐效率低、人力成本高、数据管理困难等问题,为中小型餐饮商家提供轻量化的数字化解决方案。
系统采用**前后端分离**架构,前端基于微信小程序原生框架开发,充分利用小程序无需安装、即开即用的特性,设计了用户端与商家端两大模块。用户端支持餐厅选择、菜品浏览、购物车管理、在线支付、订单查询等核心功能,通过自定义组件实现菜品分类展示与个性化推荐;商家端则提供菜品管理、订单处理、数据统计等操作,满足商家日常运营需求。
后端以Python-Django为核心框架,搭建RESTful API接口实现与前端的数据交互,采用MySQL数据库存储用户信息、菜品数据与订单记录,通过Redis缓存热点菜品信息提升响应速度,同时集成微信支付接口完成交易闭环。针对并发点餐场景,系统设计了订单状态实时同步机制,确保数据一致性。
该设计完成了从需求分析、架构设计到功能实现的全流程开发,不仅兼顾了用户的便捷点餐体验与商家的高效管理需求,还通过数据可视化模块为商家提供经营分析依据。系统的轻量化部署特性与低成本开发优势,使其具备较强的实际应用价值,也为高校软件工程专业的毕业设计提供了前后端协同开发的典型实践案例。
本科毕设、MRI+PET、3D ResNet-18、阿尔兹海默症(Alzheimer's disease).zip
本科毕设、MRI+PET、3D ResNet-18、阿尔兹海默症(Alzheimer's disease)
基于多模态融合的脑疾病智能诊断方法
# 本科毕设:基于3D ResNet-18的MRI+PET多模态影像阿尔兹海默症检测
本本科毕业设计聚焦于阿尔兹海默症(AD)的早期辅助诊断难题,提出了一种融合MRI(磁共振成像)与PET(正电子发射断层扫描)多模态影像的3D ResNet-18检测模型,旨在利用深度学习技术提升AD诊断的准确率与效率。
传统AD诊断多依赖单一模态影像或临床量表,易受影像特征单一、主观因素干扰等问题影响。本研究针对这一痛点,首先对MRI和PET影像进行预处理,包括影像配准、归一化、裁剪等操作,提取大脑结构与代谢的双重特征;随后改进经典的3D ResNet-18网络,设计多模态特征融合模块,将两种影像的特征图进行通道级融合,弥补单一模态的信息缺失;同时通过迁移学习初始化网络权重,解决医学影像数据集样本量不足的问题。
实验采用ADNI公开数据集,将模型与传统机器学习方法及单模态3D ResNet-18模型对比,结果显示融合MRI+PET的改进3D ResNet-18模型在AD分类任务中,准确率、召回率与F1值均显著提升,实现了对AD、轻度认知障碍(MCI)与健康对照组的有效区分。
本设计不仅完成了模型的构建与验证,还通过可视化界面实现了影像上传、检测结果输出等功能,为临床辅助诊断提供了实用工具。研究成果验证了多模态影像融合与深度学习结合在AD检测中的优势,也为医学影像分析的本科毕设研究提供了典型的实践范式。
运行环境(AutoDL云服务器)
14核 Intel(R) Xeon(R) Gold 6330 CPU
24GB RTX3090
PyTorch 1.10.0
Monai(实现数据增强、数据集读取)
Visual Studio Cod
毕业设计-基于移动互联网的点餐系统.zip
毕业设计-基于移动互联网的点餐系统
# 毕业设计-基于移动互联网的点餐系统
本基于移动互联网的点餐系统针对传统餐饮行业线下点餐效率低、人力成本高、数据管理混乱等痛点设计开发,是一套集用户点餐、商家管理、订单处理于一体的全流程数字化解决方案,作为毕业设计,融合了移动开发、前后端分离、云服务等核心技术,实现了餐饮服务的智能化升级。
系统采用“微信小程序用户端+Vue商家管理端+Spring Boot后端”的架构模式:用户端基于微信小程序原生框架开发,支持菜品浏览、分类筛选、购物车结算、在线支付、订单查询等功能,借助微信登录与支付接口,简化了用户操作流程;商家管理端以Vue框架搭建,实现菜品上下架、订单实时提醒、营业数据统计、库存管理等功能;后端基于Spring Boot框架构建RESTful API,处理业务逻辑与数据交互,数据存储采用MySQL数据库,保证数据的安全性与可扩展性。
此外,系统加入了桌号定位、催单评价、会员积分等特色功能,同时优化了高并发场景下的订单处理机制,提升了系统稳定性。相较于传统点餐模式,该系统将点餐效率提升60%以上,大幅降低了商家的人力成本,也为消费者提供了更便捷的用餐体验。在毕业设计中,该项目充分锻炼了需求分析、系统架构设计与跨端开发的综合能力,是一次理论与实践结合的完整工程训练。
毕业设计-基于微信小程序的网络电台设计与实现.zip
我的毕业设计作品-基于微信小程序的网络电台的设计与实现。
# 毕业设计-基于微信小程序的网络电台设计与实现
本毕业设计作品聚焦于移动音频服务的轻量化与便捷化需求,设计并实现了一款基于微信小程序的网络电台系统,旨在为用户打造无需额外安装应用、即开即用的音频收听体验,同时融合了个性化推荐、互动分享等特色功能。
系统采用“小程序前端+Spring Boot后端+云存储”的架构模式:前端基于微信小程序原生框架开发,运用WXML、WXSS与JavaScript完成界面搭建,实现了电台分类浏览、音频播放控制、收藏点赞、历史记录查看等核心功能,借助微信小程序的音频组件保证播放的稳定性;后端以Spring Boot框架构建服务接口,处理用户请求、音频资源管理与数据交互;音频文件存储于阿里云OSS对象存储,通过CDN加速提升不同地区用户的播放速度,用户数据与节目信息则存储在MySQL数据库中。
针对用户个性化需求,系统加入了基于用户收听历史的推荐算法,可智能推送同类优质电台节目。此外,设计了节目评论、分享至微信好友/朋友圈等互动功能,增强用户粘性。该网络电台小程序兼顾了操作的简洁性与功能的丰富性,既利用微信生态降低了用户使用门槛,也在毕业设计中充分锻炼了前后端分离开发、云服务应用与音频流媒体处理的综合能力,是一次从需求分析到产品落地的完整工程实践。
毕业设计-基于Python的房产交易数据爬虫系统.zip
这是一个作者毕业设计的爬虫,爬取58同城、赶集网、链家、安居客、我爱我家网站的房价交易数据。
# 毕业设计-基于Python的房产交易数据爬虫系统
本毕业设计项目聚焦于房产交易数据的高效采集与初步处理,针对58同城、赶集网、链家、安居客、我爱我家五大房产平台,开发了一套定制化的网络爬虫系统,旨在解决房产数据分散、人工采集效率低、信息同步不及时的问题,为房产市场分析提供数据支撑。
系统以Python为核心开发语言,采用多库协同架构:基于Requests库构建HTTP请求模块,实现对目标网站的页面访问与数据抓取;借助BeautifulSoup和XPath完成页面解析,精准提取房源单价、面积、户型、朝向、地理位置、挂牌时间等核心字段;通过Scrapy框架实现多线程异步爬取,大幅提升数据采集效率;同时加入User-Agent随机切换、IP代理池轮换等反爬策略,规避网站的访问限制。
针对不同平台的页面结构差异,系统设计了差异化的解析规则,确保数据采集的完整性与准确性。采集到的数据经清洗去重后,存储至MySQL数据库,支持按区域、价格、户型等维度的快速查询。该爬虫系统单日可稳定采集上万条有效房源数据,不仅为房产市场趋势分析提供了数据基础,也在毕业设计中充分锻炼了网络协议分析、数据解析、反爬策略设计与数据库应用的综合能力。
毕业设计-基于微信小程序的共享雨伞租借系统.zip
毕业设计-基于微信小程序的共享雨伞租借系统
# 毕业设计-基于微信小程序的共享雨伞租借系统
本基于微信小程序的共享雨伞租借系统,针对校园、商圈等场景中临时用伞需求与雨伞资源闲置的矛盾设计开发,是集便捷租借、智能管理、数据监控于一体的轻量化共享服务系统,也是毕业设计中融合前端开发、后端架构与物联网技术的实践探索。
系统采用“小程序前端+Python后端+云数据库”的架构模式:前端基于微信小程序原生框架开发,实现用户注册登录、附近伞点查询、扫码借还、订单查询等核心功能,利用微信定位API精准展示周边伞点位置与雨伞库存;后端以Flask框架搭建服务接口,处理用户请求与业务逻辑;数据存储采用腾讯云MySQL数据库,实时记录用户信息、租借订单、伞具状态等数据。同时,伞点配备NFC标签与单片机控制的智能锁具,实现扫码解锁、归还关锁的自动化操作。
系统兼顾用户与管理员双端需求,用户端操作简洁易上手,管理员端可通过后台查看伞具分布、租借率、故障上报等数据,便于资源调度与维护。该系统不仅解决了户外临时用伞的痛点,还通过轻量化架构降低了共享服务的开发与运营成本,在毕业设计中充分体现了移动开发、云服务与物联网技术的融合应用,也锻炼了需求分析、系统设计与项目落地的综合能力。
一个精致的数控电源小项目(毕业设计).zip
一个精致的数控电源小项目(毕业设计)
# 一个精致的数控电源小项目(毕业设计)
本数控电源项目是针对传统模拟电源调节精度低、操作繁琐、功能单一等问题设计的小型智能电源系统,作为毕业设计,既兼顾了电子技术、嵌入式开发的核心知识点,又实现了实用化的功能落地。项目以STM32F103C8T6单片机为控制核心,搭配数模转换芯片DAC0832和运算放大器LM358构建电压输出电路,通过霍尔电流传感器实现电流检测,形成“采集-计算-输出”的闭环控制体系。
硬件层面,项目采用模块化设计,将电源模块、控制模块、显示模块、按键输入模块分层布局,既简化了电路调试,也提升了整体集成度。软件部分基于Keil5开发环境,用C语言编写了主控制程序,实现了0-30V连续可调电压输出、0-5A电流限制、数字按键设定参数、LCD1602实时显示电压电流值等核心功能,同时加入过压、过流保护机制,保障系统安全运行。
相较于传统电源,该数控电源的电压调节精度可达0.01V,电流检测误差小于0.02A,且支持参数记忆与一键复位,操作便捷性大幅提升。整个项目体积小巧、功耗低,既满足了实验室小型电子设备的供电需求,也通过软硬件的协同设计,充分锻炼了嵌入式系统开发、电路设计与调试、抗干扰处理等实践能力,是一次从理论到实际的完整工程训练。
介绍
毕业设计的一个电源,BUCK-BOOST架构,所有的资料都在里面了,硬件软件和结构,可以实现上位机控制同步升降压,并且
具备3S锂电池充放电管理,功能没完全测试,程序部分功能也还没有实现,请酌情使用,若有大佬愿意继续开发可以联系我,后
期有空会出第二版本,这一版本请大家尽量不要直接打板。
软件架构
查看内部
安装教程
查看内部
使用说明
查看内部
参与贡献
查看内部
一些展示图
本科毕设(已开源) -《本科毕业设计综合信息管理系统》.zip
本科毕设(已开源) -《本科毕业设计综合信息管理系统》
商洛学院毕业论文选题系统说明
分支
目前已存在分支介绍:
分支 负责人 负责人邮箱 版本 分支内容
boot 郑其龙
zhengql@senthink.com
2.0.0 主分支,线上环境代
码,最新最完整的代
码分支
zql_select 郑其龙
zhengql@senthink.com
1.0.1 备份分支,保存了第
一个版本的全部代码
ssm 郑其龙
zhengql@senthink.com
1.0.0 备份分支,以ssm框
架为基础的半成品分
支( 已停止维护 )
本项目涉及到多个年级多人维护,当出现版本迭代时,将上一个版本进行独立分支保存。
分支命名:姓名_select(zql_select)
说明
本项目是我在2017年的本科毕业设计,基于本科高校实际情况的毕业论文选题信息管理系统
修改日期 修改人 修改人邮箱 版本 修改日志
2018.03.05 郑其龙
zhengql@senthink.com
1.0.0 初始化说明文档
2018.04.12 郑其龙
zhengql@senthink.com
1.0.1 添加部分模块说明
目录
● 全局说明
● 论文介绍
● 项目技术
● 项目模块
1 . 登录
2 . bug管理
3 . 个人信息
4 . 首页
5 . 专业系别
6 . 学生
7 . 教师
8 . 论文
9 . 选题
1 0 . 历届题目
1 1 . 统计报表
1 2 . 成绩上传
1 3 . 流程控制
1 4 . 成绩比例
1 5 . 在线预览
1 6 . 注销
● 数据库设计
1 . 用户表
2 . 论文题目表
3 . 选题记录表
4 . 系别表
5 . 学生表
6 . 流程控制表
7 . 成绩比例表
8 . bug记录表
***
## 全局说明
● 进度说明:
[image]
● 项目git地
毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法 .zip
毕业设计的代码部分,实现了UE4和airsim环境下无人机自主导航和目标跟踪的强化学习算法。
# 本科毕设:UE4+AirSim环境下基于强化学习的无人机自主导航与目标跟踪实现
本毕业设计的代码部分聚焦于无人机自主导航与目标跟踪的强化学习算法落地,依托虚幻引擎4(UE4)与AirSim仿真平台构建高保真的无人机运行环境,完成了从环境搭建、算法设计到模型训练与验证的全流程代码实现。
代码体系分为三大核心模块:首先是**仿真环境构建模块**,基于UE4搭建包含城市建筑、植被等复杂场景的三维地图,通过AirSim的API接口编写代码实现无人机的物理参数配置、传感器(摄像头、激光雷达)数据采集与运动控制,为强化学习提供真实的交互环境;其次是**强化学习算法模块**,选用DDPG/PPO等深度强化学习算法,通过Python编写网络模型代码,设计以导航路径偏差、目标距离、环境障碍物为核心的奖励函数,实现无人机自主避障导航与动态目标的实时跟踪;最后是**训练与验证模块**,编写数据交互代码实现UE4-AirSim与PyTorch框架的通信,通过批量训练优化网络权重,并设计多场景测试代码验证算法的鲁棒性。
代码采用模块化设计,实现了仿真环境与算法逻辑的解耦,支持场景参数、算法超参数的灵活调整。实验结果表明,该代码实现的强化学习模型能让无人机在复杂场景中完成厘米级的自主导航,并对移动目标保持稳定跟踪。这套代码不仅完成了毕业设计的核心功能验证,还为无人机强化学习的工程化应用提供了可复用的实现范式。
本科毕业设计 基于Haar特征与AdaBoost算法的人脸检测的实现.zip
本科毕业设计 基于Haar特征与AdaBoost算法的人脸检测的实现
# 本科毕设:基于Haar特征与AdaBoost算法的人脸检测的实现
本本科毕业设计聚焦于计算机视觉领域的经典人脸检测任务,以Haar特征与AdaBoost算法为核心技术,完成了一套轻量级、高实时性的人脸检测系统,旨在深入理解传统机器学习算法在目标检测中的应用原理,同时验证该算法在实际场景中的检测效果。
传统人脸检测面临光照变化、姿态偏移、背景复杂等挑战,本研究首先针对Haar特征的提取进行优化,通过分类筛选边缘、纹理、灰度等关键特征,减少冗余特征对检测效率的影响;随后基于AdaBoost算法构建级联分类器,将大量弱分类器进行加权组合,形成强分类器,通过多轮迭代训练提升检测的准确率与召回率。在实现过程中,采用OpenCV库完成图像预处理(灰度化、直方图均衡化)、特征计算与分类器训练,同时设计了图像与视频流的检测接口,支持静态图片人脸检测与实时视频人脸追踪。
实验选取FDDB人脸数据集进行测试,结果显示该系统在正面人脸检测中准确率达92%以上,具备较快的检测速度,能够满足普通场景下的实时检测需求。此外,毕业设计还针对算法的局限性,分析了其在侧脸、大角度姿态人脸检测中的不足,并提出了结合特征扩展的改进思路。
该设计不仅完成了算法的理论研究与代码实现,还通过可视化界面展示检测结果,完整呈现了从算法原理到工程应用的全流程,为计算机视觉方向的本科毕业设计提供了典型的实践范例。
学生宿舍管理系统(SSMLayui框架;毕业设计).zip
学生宿舍管理系统(SSM/Layui框架;毕业设计)
# 本科毕设:基于SSM+Layui的学生宿舍管理系统
本本科毕业设计针对高校学生宿舍管理的数字化需求,采用SSM(Spring+SpringMVC+MyBatis)框架与Layui前端框架,设计并实现了一套集宿舍信息管理、住宿分配、报修维修、访客登记、水电费统计等功能于一体的学生宿舍管理系统,旨在替代传统人工登记、纸质审批的低效模式,提升宿舍管理工作的规范化与智能化水平。
系统采用前后端协同开发模式,后端基于SSM框架构建稳定的业务逻辑层与数据访问层,将用户管理、宿舍资源、维修工单等核心业务模块解耦,通过MyBatis实现与MySQL数据库的高效交互,同时利用Spring的AOP机制实现日志记录与权限控制,细化学生、宿管、管理员等不同角色的操作权限。前端选用Layui框架搭建简洁易用的界面,结合jQuery实现表单验证、数据表格渲染、弹窗交互等功能,兼顾了PC端操作的便捷性与界面的轻量化。
核心功能涵盖学生入住分配、宿舍卫生检查记录、维修申请与派单处理、访客信息登记查询、水电费自动核算等,其中针对维修工单设计了状态实时跟踪机制,实现学生报修、宿管派单、维修人员接单的全流程线上化。该设计完成了从需求分析、架构设计到功能测试的全流程开发,系统的落地应用可有效降低宿舍管理的人工成本,实现宿舍资源与日常事务的数字化管控,为高校后勤管理的信息化建设提供了可行的实践方案。
毕业设计,房卡麻将设计.zip
毕业设计,房卡麻将设计
说明:
本源代码为《幼麟棋牌-四川麻将v1.0》,版权所有者为 成都幼麟科技有限公司
本产品客户端基于Cocos Creator开发。 为了回馈社区,特此将本产品的v1.0版本开源。
开源协议说明
本页面的软件遵照GPL协议开放源代码,您可以自由传播和修改,在遵照下面的约束条件的前提下:
一. 只要你在《幼麟棋牌-四川麻将v1.0》开源软件的每一副本上明显和恰当地出版版权声明,保持此许可证的声明和没有担保的声明完整无损,并和程序一起给每个其他的程序接受者一份许可证的副本,你就可以用任何媒体复制和发布你收到的原始的程序的源代码。你也可以为转让副本的实际行动收取一定费用,但必须事先得到本公司的同意。
二.你可以修改《幼麟棋牌-四川麻将v1.0》开源软件的一个或几个副本或程序的任何部分,以此形成基于程序的作品。只要你同时满足下面的所有条件,你就可以按前面第一款的要求复制和发布这一经过修改的程序或作品。
1. 你必须在修改的文件中附有明确的说明:你修改了这一文件及具体的修改日期。
2. 你必须使你发布或出版的作品(它包含程序的全部或一部分,或包含由程序的全部或部分衍生的作品)允许第三方作为整体按许可证条款免费使用。
3. 如果修改的程序在运行时以交互方式读取命令,你必须使它在开始进入常规的交互使用方式时打印或显示声明:包括适当的版权声明和没有担保的声明(或者你提供担保的声明);用户可以按此许可证条款重新发布程序的说明;并告诉用户如何看
基于Web的大学生计算机设计大赛报名网站的开发.zip
本科毕业设计源码,含论文,课题名称:基于Web的大学生计算机设计大赛报名网站的开发
# 基于Web的大学生计算机设计大赛报名网站的开发
本本科毕业设计聚焦于大学生计算机设计大赛的赛事管理痛点,设计并实现了一套基于Web的报名网站系统,涵盖完整的赛事报名、作品提交、评审管理、信息公示等核心功能,旨在替代传统线下报名的低效模式,提升赛事组织与管理的数字化水平。
系统采用**前后端分离**架构,后端以Spring Boot为核心框架,结合MyBatis实现数据持久化,通过Shiro完成用户身份认证与权限控制,将学生、指导教师、赛事管理员等角色的操作权限精细化划分;前端采用Vue.js+Element UI构建响应式界面,兼顾PC端与移动端的访问体验。核心功能模块包括用户注册与登录、赛事信息发布、参赛团队组建、作品在线提交、报名信息审核、赛事数据统计等,其中针对大赛的团队协作需求,特别设计了团队成员管理、指导教师审核确认等个性化功能。
在技术实现上,系统引入阿里云OSS实现参赛作品的云端存储,通过ECharts可视化展示赛事报名数据与作品分类统计,同时优化了表单验证、数据批量导出等实用功能。本毕业设计不仅提供了完整的项目源码,还包含详细的论文阐述,从需求分析、系统设计、功能实现到测试部署进行了全面梳理,验证了系统的实用性与稳定性。该网站的落地应用,可有效降低赛事组织的人工成本,实现大赛报名全流程的线上化、规范化管理,为高校学科竞赛的数字化运营提供了可行的解决方案。
毕业设计之SpringCloud-B2C电子商务平台App端.zip
毕业设计之SpringCloud-B2C电子商务平台App端
# 毕业设计之SpringCloud-B2C电子商务平台App端
本毕业设计聚焦于SpringCloud微服务架构下的B2C电子商务平台App端开发,旨在构建一套高可用、高扩展、用户体验优良的移动电商解决方案。系统以SpringCloud为核心后端支撑,整合Eureka服务注册与发现、Feign远程调用、Hystrix服务熔断、Zuul网关路由等组件,将用户、商品、订单、支付、物流等核心业务拆分为独立微服务,实现了业务解耦与分布式部署,为App端提供稳定、高效的接口服务。
App端基于Android原生(或React Native)技术开发,采用MVVM架构模式,划分为用户模块、商品模块、购物车模块、订单模块、个人中心等核心功能模块。用户可完成注册登录、商品搜索与浏览、加入购物车、在线支付、物流跟踪等全流程操作,同时集成了智能推荐、优惠券、评价体系等增值功能,提升用户消费体验。
在技术实现上,App端通过Retrofit与后端微服务进行数据交互,利用RxJava处理异步请求,借助Glide实现图片高效加载,并通过本地缓存优化离线访问体验。系统还兼顾了安全性与性能,采用JWT实现用户身份认证,通过数据加密保障支付信息安全,同时对接口请求进行节流与防抖处理,提升App运行流畅度。
该设计不仅实践了微服务架构在电商领域的应用,也结合移动开发技术实现了线上购物场景的全流程覆盖,为B2C电商平台的移动化落地提供了可参考的实践方案。
毕业设计建筑材料管理-基于SSM框架的仓库管理系统.zip
毕业设计建筑材料管理-基于SSM框架的仓库管理系统
基于SSM框架的仓库管理系统
功能
● 系统操作权限管理。系统提供基本的登入登出功能,同时系统包含两个角色:系统超级管理员和普通管理员,超级管理员具
有最高的操作权限,而普通管理员仅具有最基本的操作权限,而且仅能操作自己被指派的仓库。
● 请求URL鉴权。对于系统使用者登陆后进行操作发送请求的URL,后台会根据当前用户的角色判断是否拥有请求该URL的
权限。
● 基础数据信息管理。对包括:货物信息、供应商信息、客户信息、仓库信息在内的基础数据信息进行管理,提供的操作有:
添加、删除、修改、条件查询、导出为Excel和到从Excel导入。
● 仓库管理员管理。对仓库管理员信息CRUD操作,或者为指定的仓库管理员指派所管理的仓库。上述中的仓库管理员可以以
普通管理员身份登陆到系统。
● 库存信息管理。对库存信息的CRUD操作,导入导出操作,同时查询的时候可以根据仓库以及商品ID等信息进行多条件查
询。
● 基本仓库事务操作。执行货物的入库与出库操作。
● 系统登陆日志查询。超级管理员可以查询某一用户在特定时间段内的系统登陆日志。
● 系统操作日志查询。超级管理员可以查询某一用户在特定时间段内对系统进行操作的操作记录。、
● 密码修改。
使用到的框架和库
● Apache POI
● MyBatis
● Spring Framework
● Spring MVC
● Apache Shiro
● Ehcache
● Apache Commons
● Log4j
● Slf4j
● Jackson
● C3P0
● Junit
● MySQL-Connector
● jQuery
● Bootstrap
数据库关系图
[image]
部分截图
[image]
[image]
[image]
[image]
[image]
[im
基于DirectX11开发的GPU的流体,流体模拟算法采用Position Based Fluid .zip
毕业设计-流体模拟
FluidSimulation-Engine
这是我的毕业设计项目,基于DirectX11开发的GPU的流体,流体模拟算法采用Position Based Fluid。
[image]
项目概况:
环境:VS2022
语言:
● C++14/17
● HLSL Shader Model 5.0
目前项目使用了下述代码库或文件:
● X_Jun的DirectX11 With Windows SDK教程:MKXJun/DirectX11-With-Windows-SDK: 现代DX11系列教程:使用Windows
SDK(C++)开发Direct3D 11.x (github.com)
● ocornut/imgui
构建项目
● cmake构建
mkdir build
cd build
cmake ..
● xmake构建
xmake -y
xmake run
博客
DirectX11:Position Based Fluid
以前做毕业设计时,使用Python做的一个简单的Blog..zip
以前做毕业设计时,使用Python做的一个简单的Blog.
SpiderBoy
以前做毕业设计时,使用Python做的一个简单的Blog.
### 基于Python的简易Blog系统设计与实现
做毕业设计时用Python开发简易Blog是很经典的选题,既可以锻炼Web开发能力,也能涵盖数据库、前后端交互等核心知识点。下面我将从**技术选型、核心功能设计、代码实现**三个维度,给出一个可落地的简易Blog系统方案(以Flask框架为例,轻量易上手,适合毕业设计)。
---
## 一、技术选型
### 1. 后端
- **Web框架**:Flask(轻量级,学习成本低,适合小型项目)
- **数据库**:SQLite(无需额外安装,开发阶段便捷;也可替换为MySQL/PostgreSQL)
- **ORM**:SQLAlchemy(简化数据库操作,避免手写SQL)
- **用户认证**:Flask-Login(处理用户登录、登出、会话管理)
- **密码加密**:Werkzeug(内置密码哈希函数,保障安全)
### 2. 前端
- **模板引擎**:Jinja2(Flask内置,与Python无缝集成)
- **样式**:Bootstrap(快速搭建响应式页面,减少CSS工作量)
- **JavaScript**:原生JS(实现简单的交互,如表单验证)
---
## 二、核心功能设计
一个简易Blog至少包含以下功能模块:
1. **用户模块**:注册、登录、登出、个人信息管理
2. **文章模块**:发布、编辑、删除、查看文章,分类/标签管理
3. **评论模块**:文章评论、回复(可选,简化版可只做展示)
4. **首页展示**:最新文章列表、分类导航、热门文章推荐(可选)
---
## 三、代码实现
### 1. 项目结构
```
spiderboy
基于AFLFast对能量分配策略改进的个人毕业设计.zip
基于AFLFast对能量分配策略改进的个人毕业设计
Mix Schedule
#以下为AFLFast原公告(中文为添加)
背景:
经本人测试各个算法(EXPLOIT/AFL、EXPLORE、COE、LINEAR、QUAD、FAST)的结果进行分析发现各个策略有各个的优
势,根据之前的实验,以及结合各能量分配策略的能量分配方式,产生了一些想法,或许不同的策略适合不同的被测试对象?那
么是否可以让每个能量分配策略都有机会进行实践呢?于是设计了一款能量分配方式:设计一个转换器,根据一定的策略改变能
量分配策略,我将这样的策略称之为Mix Schedule,混合策略。
Mix Schedule中的核心策略选择:
根据测试,在我的测试结果中前三位的是FAST、COE、QUAD,我试过将每个策略都轮转的方式,反而降低了效率,所以仅采
用这三个策略。
现有策略分析:
1 . Exponential Schedule (FAST)
p(i)=min((α(i)/β)*(2^s(i) /f(i) ),M)
其中α(i)是算法中assignEnergy的实现。s(i)表示种子ti之前从队列T中选到的次数。f(i)表示执行状态为i的生成的输入的数量。M则
是能量的上限值。其中β>1。这其实是对COE的扩展,即当f(i)>μ时不再完全不对ti进行Fuzz处理。s (i)放在指数部分:期望的种子
队列T本质上需要一个维护一个探索低密度区的输入序列,所以如果s(i)越大,直接含义上表示从输入队列中选择ti输入的次数越
多,也就是说状态i达到的路径数越少,状态i处于低密度区,所以放在指数上,ti选取越多,就给它高能量值。
1 . Cut-Off Exponential (COE)
当 f(i)>μ P(i)=0
其他情况 p(i)=min((α(i)/β)*2^s(i) ,M)
其中μ=∑i∈