棋盘问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/dpdpd/article/details/51316061
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2

1


题目大意:输入一个n*n矩阵  ‘.’代表空格,‘#’代表可以放置棋子的位置

                给你k个棋子,每一行,每一列都只能有一个棋子,问有多少种放置方法。


解题思路:dfs,一行行遍历,然后判断该行每一列的情况。


代码:

#include<iostream>
using namespace std;
int n,k;
char a[10][10];
int col[10];
int ans;
void dfs(int s,int num)
{
for(int j=0;j<n;j++)//对列进行遍历 
{
if(a[s][j]=='#'&&col[j]==0)
{
if(num==1)
ans++;//这种情况下num一直减小到1,那么这种情况是存在的
else
{
col[j]=1;
for(int h=s+1;h<=n-(num-1);h++)
dfs(h,num-1);
col[j]=0;
}

}
}
int main()
{
while((cin>>n>>k)&&(n!=-1||k!=-1))
{
ans=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cin>>a[i][j];
}
for(int i=0;i<n;i++)//因为col是全局变量所以每次需要清空 
col[i]=0;
for(int i=0;i<=n-k;i++)// 从第0行一直到n-k行,因为第n-k行放置一个棋子,接下来必定有重复的行数 
{
dfs(i,k);//第i行开始,放置K个棋子 
}
cout<<ans<<endl;
}
return 0;
}



代码提交地址:http://poj.org/problem?id=1321



阅读更多
换一批

没有更多推荐了,返回首页