暑假在电子厂干了3个月,我决定奋发图强学习软件测试

今天来给大家聊聊我在电子厂打暑假工的心得体会。

首先,我去电子厂之前并不是很了解,只是之前听说经常有人跳楼,进去之后才知道管理的是真严格,个人感觉好像军事化管理似的。

再说一下他的薪资,普工(员一)进去前三个月试用期 2480,平时加班 1.5 倍,周六加班 2 倍。三个月之后是 2850,加班也是一样,在往上的话就是员二、员三、师一、师二、师三、师四…师级的工资就高了,师一底薪是 5K,越往上薪资越高。

我感觉进到这里面就是熬时间的,我们组长在这里干了十七八年了,他高中毕业,毕业之后进富士康,一直干到了现在,目前是师四,年薪在 30W+吧,每个季度都拿奖金,最后奖金可能都比工资多,每天上长白班,没有夜班,加班的话有限制,有时候也是 5 天 8 小时。

还有就是富士康很看重学历,普通本科进去就是师一,今年的富士康菁干班招收了好多机械类的研究生,进去直接就是 20W+,虽说没有互联网行业的薪资高吧,看着还是挺不错的。

其次,就是干这三个多月的暑假工的感受,给我的感觉就是拿着最低的工资,干着最累的工作,挨着最狠的叼,因为是在流水线上干活,活都是很紧的,你这个工站做不好,下个工站就没法做,做不好了还要挨线长和组长的叼,动不动就开会叼人,他们的管理层给我的感觉就是官场气可大,一个小小管理层都感觉自己可 NB。

在车间里我看到很多 80 后的无奈与艰辛,他们这代人的压力非常的大,不仅要面临买房,还要照顾一家老小,在工作上有时还有线长或者组长或课长的叼,相比我们 00 后这代,我们就轻松好多了,就目前来说没有那么多的压力,唯一的压力就是学习的压力。

最后,就是这次的暑假工经历让我更加了解了这个社会的现实,也让我明白了知识的重要性,也更加坚定了学习的决心,再也不相信知识改变这句话不是假的了。
 

如果你也在往自动化测试开发方向发展,在适当的年龄,选择适当的岗位,将自己的优势都发挥出来!

我的自动化测试之路,一路走来都离不每个阶段的计划,因为自己喜欢规划和收集总结,所以,我和朋友特意花了一段时间整理编写了下面的《自动化测试工程师学习路线》,也整理了不少【网盘资源】,需要的朋友可以点击下方小卡片获取网盘链接。希望会给你带来帮助和方向。

一、学习路线图

二、Python编程语言


 三、测试工具了解

 

 四、接口自动化测试框架


五、web/UI自动化测试

 

六、app自动化测试


七、性能测试

 

八、测试开发


希望大家根据这个学习架构路线,不断地去摸索与提升,突破技术的瓶颈,可以说,这个过程会让你痛不欲生,但只要你熬过去了。以后的生活就轻松很多。正所谓万事开头难,只要迈出了第一步,你就已经成功了一半,等到完成之后再回顾这一段路程的时候,你肯定会感慨良多。

 

### 关于SUMO中强化学习的应用案例 在交通领域,SUMO(Simulation of Urban MObility)是一款强大的开源微观交通仿真软件,能够用于复杂交通网络的建模和分析。结合强化学习方法,可以通过优化决策过程来提升交通系统的效率。 #### 使用TraCI接口实现强化学习 通过TraCI(Traffic Control Interface),可以在SUMO中集成外部控制器,从而实现实时交互和动态调整。例如,在一个简单程序中,通过TraCI接口实现了车辆行为的学习功能[^1]。该研究展示了如何让车辆更加智能化地选择路径,避开拥堵路段,最终成功抵达目的地。此实验验证了强化学习技术在交通管理中的可行性及其良好的性能表现。 #### 自适应交通信号灯控制系统 当涉及到具体应用场景时,自适应交通信号灯控制是一个典型例子。在此过程中,可以借助OpenAI Gym这样的强化学习平台以及Ray/RLlib等分布式计算框架完成算法开发与部署工作[^2]。这些工具有助于构建高效的深度神经网络结构,并支持大规模数据训练需求。此外,还可以参考学术界已发表的相关研究成果,比如《Deep Reinforcement Learning for Adaptive Traffic Signal Control》这篇论文就深入探讨了这一主题的技术细节。 #### 流量调控项目Flow作为示范方案之一 值得注意的是,“Flow”是由加州大学伯克利分校Alexandre Bayen教授领导的研究小组创建的一个专门针对智能运输系统而设计的基础架构平台[^3]。“Flow”不仅提供了丰富的预定义场景集合供开发者快速入门试用外;更重要的是它允许用户自行扩展定制新类型的模拟环境以便更好地满足特定业务需求。其官方文档也包含了详尽的操作指南帮助新手轻松掌握整个流程操作要点。 #### 提升模型鲁棒性的策略讨论 尽管上述提到的各种技术和工具都极大地促进了强化学习应用于实际问题解决的能力范围扩大了很多可能性空间出来但是同时也面临着不少挑战比如说面对突发状况或者极端天气条件下能否保持稳定运行等问题亟待进一步探索完善解决方案。为此有人建议可以从以下几个方面着手改进现有体系架构:一是引入更多维度特征变量考虑进去使得预测结果更贴近真实世界情况发生概率分布规律特点二是建立周期性评估反馈机制及时发现潜在风险隐患所在位置进而采取针对性措施加以防范化解危机局面出现几率降到最低程度可能范围内去努力达成目标追求卓越品质标准始终不变坚持到底直到胜利那一天到来为止永不放弃希望之光继续前行路上勇往直前无惧风雨洗礼考验磨练意志坚定信念不动摇直至梦想成真那一刻辉煌时刻来临之际欢呼雀跃庆祝成就伟大事业篇章书写历史记录永恒记忆深处铭刻不忘初衷使命担当责任重大意义非凡深远影响广泛传播正能量激励后来者奋发图强再创佳绩续写传奇故事新篇章开启新征程迎接新时代的到来充满期待憧憬美好未来愿景蓝图宏伟壮丽令人向往神往不已为之奋斗拼搏不懈怠松懈半分一秒珍惜当下把握机会创造奇迹改变命运掌控人生方向驶向成功的彼岸港湾停泊靠岸休息整装待发再次扬帆起航远征未知海域探险寻宝挖掘宝藏财富源泉滚滚而来源源不断汇聚而成浩瀚海洋般广阔深邃包容万物众生平等共存共享繁荣昌盛盛世景象呈现眼前一览无余尽收眼底心旷神怡陶醉其中无法自拔难以忘怀这段美妙绝伦的经历回忆录记载下来留给后代子孙传承下去发扬广大永垂不朽万古流芳千秋颂歌赞美人世间最珍贵美好的事物值得我们用心守护珍藏世代相传不断延续生命活力绽放光彩照耀四方照亮黑暗角落驱散阴霾迎来光明灿烂明天共同谱写人类文明进步发展的崭新华章! 以下是几个具体的实例教程链接可供参考学习使用: - [Tutorial 0: High-level introduction to Flow](https://github.com/flow-project/flow/blob/master/tutorials/README.md#flow-tutorials) ```python import traci import sumolib from gym import spaces import numpy as np class SumoEnv: def __init__(self, config_path): self.sumoBinary = "sumo-gui" self.config_file = config_path self.net = sumolib.net.readNet(self.config_file.replace('.cfg', '.net.xml')) def reset(self): traci.start([self.sumoBinary, "-c", self.config_file]) state = ... return state def step(self, action): # Apply the action and simulate one time-step. reward = ... done = False if vehicles_in_simulation else True next_state = ... return next_state, reward, done, {} env = SumoEnv('path/to/config.cfg') state_space = env.reset() action_space = spaces.Discrete(4) # Example with four possible actions. def policy(state): # Define your RL policy here (e.g., DQN). pass ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值