装箱问题----RQNOJ_147----01背包

题目地址:http://www.rqnoj.cn/Problem_147.html

查看题目 Show Problem

[Donate]您的捐助,让RQNOJ明天更美好!

题目:装箱问题

问题编号:147

题目描述

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30=,每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。

输入格式

输入:
第一行是一个整数v,表示箱子容量
第二行是一个整数n,表示有n个物品
接下来n行,分别表示这n 个物品的各自体积

输出格式

一个整数,表示箱子剩余空间。

样例输入

24
6      
8 
3
12
7
9
7


样例输出


0


这题的大意就是,有若干个物品,有一个限容的箱子,现在就是要尽量多的装物品,使得箱子剩下的空间最小。用01背包法,详见http://love-oriented.com/pack/P01.html

求出最多能装多少,然后用总体积减去最大体积,就是最小剩余容积。

#include<iostream>
using namespace std;

#define MAX 20020

int f[MAX];
int things[40];

int max(int a,int b)
{
	if(a>b)
		return a;
	return b;
}

int main()
{
	int V;
	while(scanf("%d",&V) != EOF && V)
	{
		int n;
		scanf("%d",&n);
		int i;
		for(i=1;i<=n;i++)
			scanf("%d",&things[i]);
		for(i=0;i<=V;i++)
			f[i] = 0;

		int v;
		for(i=1;i<=n;i++)
		{
			for(v=V;v>=things[i];v--)
			{
				f[v] = max(f[v],f[v-things[i]]+things[i]);
			}
		}

		printf("%d\n",V-f[V]);
	}

	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值