题目地址:http://www.rqnoj.cn/Problem_147.html
查看题目 Show Problem
题目:装箱问题
问题编号:147
题目描述
有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30=,每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入格式
输入:
第一行是一个整数v,表示箱子容量
第二行是一个整数n,表示有n个物品
接下来n行,分别表示这n 个物品的各自体积
输出格式
一个整数,表示箱子剩余空间。
样例输入
246
8
3
12
7
9
7
样例输出
0
这题的大意就是,有若干个物品,有一个限容的箱子,现在就是要尽量多的装物品,使得箱子剩下的空间最小。用01背包法,详见http://love-oriented.com/pack/P01.html
求出最多能装多少,然后用总体积减去最大体积,就是最小剩余容积。
#include<iostream>
using namespace std;
#define MAX 20020
int f[MAX];
int things[40];
int max(int a,int b)
{
if(a>b)
return a;
return b;
}
int main()
{
int V;
while(scanf("%d",&V) != EOF && V)
{
int n;
scanf("%d",&n);
int i;
for(i=1;i<=n;i++)
scanf("%d",&things[i]);
for(i=0;i<=V;i++)
f[i] = 0;
int v;
for(i=1;i<=n;i++)
{
for(v=V;v>=things[i];v--)
{
f[v] = max(f[v],f[v-things[i]]+things[i]);
}
}
printf("%d\n",V-f[V]);
}
return 0;
}