数据库领域目前的研究方向

简单总结了一下近两年SIGMOD、ICDE、VLDB等会议的文章,认为目前数据库的研究有如下几个趋势:

(1)使用MapReduce来处理一些传统的问题

Efficient parallel set-similarity joins using MapReduce(SIGMOD 2010)

Distributed nonnegative matrix factorization for web-scale dyadic data analysis on

mapreduce(www 2010)

A comparison of join algorithms for log processing in MapReduce(SIGMOD 2010)

 

(2)MapReduce的优化(性能、索引、查询语言等),例如:

MapDupReducer : Detecting Near Duplicates over Massive(SIGMOD 2010)

Mapdupreducer: detecting near duplicates over massive datasets(ICDE)

The Performance of MapReduce: An Indepth Study(VLDB 2010)

On single-pass indexing with MapReduce(SIGIR 2009)

ASSET Queries: A Declarative Alternative to MapReduce (SIGMOD 2009)

MR-Scope: A Real-Time Tracing Tool for MapReduce (HPDC 2010)

A Platform for Scalable One-pass Analytics using MapReduce(SIGMOD 2011)

 

(3) MapReduce+PDBMS(NoSQL+SQL)

Integrating hadoop and parallel DBMs(SIGMOD 2010)

HadoopDB : An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical 

Workloads(VLDB 2009)

A comparison of approaches to large-scale data analysis(ICDE 2009)

 

(4) 列存储以及行列混合存储机制

Read-Optimized Databases, In Depth(VLDB 2008)

ColumnStores vs. RowStores: How Different Are They Really?(SIGMOD 2008)

(5)支持特殊数据处理的专用数据库的研究

ArrayStore: A Storage Manager for Complex Parallel Array Processing (SIGMOD 2011)

Overview of SciDB(SIGMOD 2010)

 

本文的部分文章列表来源于http://www.mendeley.com/research-papers/tag/mapreduce/,特表示感谢!

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值