ACM算法总结 数据结构(一)






基本数据结构

最基本的数据结构有队列链表等等,除了链表之外,C++的STL都有相应的实现。

  • 栈:stack<type>,push()pop()top()等;
  • 队列:queue<type>,push()pop()front() 等;
  • 堆:priority_queue<type>(priority_queue<type,vector<type>,func>),push()pop()top()等;
  • 集合:set<type>,insert()count()size() 等;

除此之外,STL中还有很多有用的数据结构,比如说:

  • deque:双端队列,注意STL中的栈和队列其实都是基于deque实现的;
  • vector:向量,类似数组,而且是可变长数组;
  • map:内部实现的是红黑树,可以实现任意两种类型的一一映射;
  • unordered_map:内部实现的是哈希表,其实和map功能差不多,但是这个查找更快,不过内部元素无序;
  • bitset:一种支持各种位运算并且特别高效的结构;
  • multiset:支持重复元素的集合;
  • pair:二元对,比较方便;




并查集

一种树形结构,支持集合的合并查询

  • 合并(unite):合并两个子集;
  • 查询(find):查询某个元素属于哪个集合;

并查集的名字也由此而来(应该是 union-find set,不过C++的union是一个关键字,所以这里用了unite)。

并查集的代码如下:

const int maxn=1e5+5;
int n,far[maxn];

int find(int x) {return x==far[x]?x:far[x]=find(far[x]);}
bool isSame(int x,int y) {return find(x)==find(y);}
void unite(int x,int y) {far[find(x)]=find(y);}

// 注意要初始化
// REP(i,1,n) far[i]=i;

上面的代码已经实现了路径压缩,大多数情况已经足够快了(平均单次复杂度是阿克曼函数级别的),如果要求比较严格,可以加上启发式合并,也就是合并的时候让集合小的合并到集合大的上面去。




带权并查集

普通的并查集维护的只是结点之间的连接关系,如果两个结点之间还有其他关系,就要用带权并查集。对于每个结点不仅仅要保存其父亲结点 far[i] ,还要保存其与父亲节点的关系 value[i] 。

然后同样讨论“并”和“查”两个操作:

  • 查询(find):在路径压缩的时候,因为直接把当前结点连到了祖先,所以要先处理父亲节点,然后就已经知道了父亲结点和祖先的关系value,所以只用把自己的 value[i] 加上父结点和祖先的 value 就行了;
  • 合并(unite):假设合并 x 和 y,x 和 y 的关系为 w,他们的祖先分别是 fx 和 fy,我们要令 far[fx] = fy,这里改变value的只有fx,如果画一个图出来就知道,应该令 value[fx]=value[y]+w-value[x] 。

这里面两个结点之间的关系都是单向的,属于偏序关系。

代码如下:

int find(int x)
{
    if(x==far[x]) return x;
    int t=far[x]; far[x]=find(far[x]); value[x]+=value[t];
    return far[x];
}

void unite(int x,int y,int w)
{
    int fx=find(x),fy=find(y);
    if(fx!=fy)
    {
        far[fx]=fy;
        value[fx]=value[y]+w-value[x];
    }
}
// 注意要初始化
// REP(i,1,n) far[i]=i;




st表

st表用于处理RMQ问题,可以在O(nlogn)的时间内建表,在O(1)时间内查询。

其实就是一个倍增+dp的思想, s t [ i ] [ j ] st[i][j] st[i][j] 表示 a [ i ] a[i] a[i] a [ i + 2 j − 1 ] a[i+2^j-1] a[i+2j1] 这个区间的最值。

代码如下:

const int maxn=1e5+5;
int st[maxn][22],lg2[maxn],a[maxn];

void get_st(int n)
{
    REP(i,2,maxn-1) lg2[i]=lg2[i-1]+(1<<(lg2[i-1]+1)==i);
    REP(i,1,n) st[i][0]=a[i];
    REP(j,1,lg2[n]) REP(i,1,n+1-(1<<j))
        st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}

int RMQ(int l,int r)
{
    int k=lg2[r-l+1];
    return max(st[l][k],st[r-(1<<k)+1][k]);
}

扩展到二维,其实也是一样的,用 s t [ r ] [ c ] [ i ] [ j ] st[r][c][i][j] st[r][c][i][j] 表示 a [ r ] [ c ] a[r][c] a[r][c] a [ r + 2 i − 1 ] [ c + 2 j − 1 ] a[r+2^i-1][c+2^j-1] a[r+2i1][c+2j1] 这个区间内的最值。

代码如下:

const int maxn=500,N=11;
int lg2[maxn],a[maxn][maxn],st[maxn][maxn][N][N];

void get_st(int n,int m)
{
    REP(i,2,maxn-1) lg2[i]=lg2[i-1]+(1<<(lg2[i-1]+1)==i);
    REP(i,1,n) REP(j,1,m) st[i][j][0][0]=a[i][j];
    int t=lg2[n];
    REP(i,0,t) REP(j,0,t)
    {
        if(!i && !j) continue;
        REP(r,1,n+1-(1<<i)) REP(c,1,m+1-(1<<j))
            if(i) st[r][c][i][j]=max(st[r][c][i-1][j],st[r+(1<<(i-1))][c][i-1][j]);
            else st[r][c][i][j]=max(st[r][c][i][j-1],st[r][c+(1<<(j-1))][i][j-1]);
    }
}

int RMQ2(int x,int y,int xx,int yy)
{
    int k=lg2[xx-x+1],kk=lg2[yy-y+1];
    int ans1=max(st[x][y][k][kk],st[xx-(1<<k)+1][y][k][kk]);
    int ans2=max(st[x][yy-(1<<kk)+1][k][kk],st[xx-(1<<k)+1][yy-(1<<kk)+1][k][kk]);
    return max(ans1,ans2);
}

做题的时候对于二维情况,比较多的是算一个正方形内部的最值,这个时候st数组只用三维就够了。




线段树

一种支持可合并的区间操作的数据结构,比如区间极值,区间和等等。

线段树有很多技巧,懒惰标记,永久标记(其实就是某个点管了整个子树)等等。

由于线段树是一种非常基本的竞赛必备知识,已经写了很多了,所以不作详细说明。

支持区间加法更新的求和线段树:

template <class T>
struct segment_tree_sum
{
    #define chl (k<<1)
    #define chr (k<<1|1)
    #define mid ((l+r)>>1)
    T *t,*tag;
    int n;

    segment_tree_sum(int n) {t=new T[n<<2](); tag=new T[n<<2](); this->n=n;}

    void push_up(int k) {t[k]=t[chl]+t[chr];}

    void push_down(int k,int l,int r)
    {
        if(!tag[k]) return;
        t[chl]+=tag[k]*(mid-l+1); t[chr]+=tag[k]*(r-mid);
        tag[chl]+=tag[k]; tag[chr]+=tag[k]; tag[k]=0;
    }

    void build(int k,int l,int r,T *a)
    {
        if(l>r) return;
        if(l==r) {t[k]=a[l]; return;}
        build(chl,l,mid,a); build(chr,mid+1,r,a);
        push_up(k);
    }
    void build(T *a) {build(1,1,n,a);}

    void update_add(int k,int l,int r,int ll,int rr,T x)
    {
        if(l>rr || ll>r) return;
        if(l>=ll && r<=rr) {t[k]+=x*(r-l+1); tag[k]+=x; return;}
        push_down(k,l,r);
        update_add(chl,l,mid,ll,rr,x); update_add(chr,mid+1,r,ll,rr,x);
        push_up(k);
    }
    void update_add(int ll,int rr,T x) {update_add(1,1,n,ll,rr,x);}

    T query(int k,int l,int r,int ll,int rr)
    {
        if(l>rr || ll>r) return 0;
        if(l>=ll && r<=rr) return t[k];
        push_down(k,l,r);
        return query(chl,l,mid,ll,rr)+query(chr,mid+1,r,ll,rr);
    }
    T query(int ll,int rr) {return query(1,1,n,ll,rr);}
};

由于结构体内部分配内存用的是堆空间,所以可以随意在哪里开这样的结构体。

再放一个支持单点更新的极值线段树:

template <class T>
struct segment_tree_max
{
    #define chl (k<<1)
    #define chr (k<<1|1)
    #define mid ((l+r)>>1)
    #define inf 2147483647
    T *t;
    int n;

    segment_tree_max(int n) {t=new T[n<<2](); this->n=n;}

    void push_up(int k) {t[k]=max(t[chl],t[chr]);}

    void build(int k,int l,int r,T *a)
    {
        if(l>r) return;
        if(l==r) {t[k]=a[l]; return;}
        build(chl,l,mid,a); build(chr,mid+1,r,a);
        push_up(k);
    }
    void build(T *a) {build(1,1,n,a);}

    void update(int k,int l,int r,int id,T x)
    {
        if(l>r || id<l || id>r) return;
        if(l==r && l==id) {t[k]=x; return;}
        update(chl,l,mid,id,x); update(chr,mid+1,r,id,x);
        push_up(k);
    }
    void update(int id,T x) {update(1,1,n,id,x);}

    T query(int k,int l,int r,int ll,int rr)
    {
        if(l>rr || ll>r) return -inf;
        if(l>=ll && r<=rr) return t[k];
        return max(query(chl,l,mid,ll,rr),query(chr,mid+1,r,ll,rr));
    }
    T query(int ll,int rr) {return query(1,1,n,ll,rr);}
};

再放一个支持区间更新的(一般用于LL的)极值线段树(因为之前写错过,查询的时候如果 inf 要参与计算的话,就要小心了):

const LL inf=1e9;
template <class T>
struct segment_tree_min
{
    #define chl (k<<1)
    #define chr (k<<1|1)
    #define mid ((l+r)>>1)
    T *t,*tag;
    int n;

    segment_tree_min(int n) {t=new T[n<<2](); tag=new T[n<<2](); this->n=n;}

    void push_up(int k) {t[k]=min(t[chl],t[chr]);}

    void push_down(int k,int l,int r)
    {
        if(!tag[k]) return;
        t[chl]+=tag[k]; t[chr]+=tag[k];
        tag[chl]+=tag[k]; tag[chr]+=tag[k]; tag[k]=0;
    }

    void build(int k,int l,int r,T *a)
    {
        if(l>r) return;
        if(l==r) {t[k]=a[l]; return;}
        build(chl,l,mid,a); build(chr,mid+1,r,a);
        push_up(k);
    }
    void build(T *a) {build(1,1,n,a);}

    void update_add(int k,int l,int r,int ll,int rr,T x)
    {
        if(l>rr || ll>r) return;
        if(l>=ll && r<=rr) {t[k]+=x; tag[k]+=x; return;}
        push_down(k,l,r);
        update_add(chl,l,mid,ll,rr,x); update_add(chr,mid+1,r,ll,rr,x);
        push_up(k);
    }
    void update_add(int ll,int rr,T x) {update_add(1,1,n,ll,rr,x);}

    T query(int k,int l,int r,int ll,int rr)
    {
        if(l>rr || ll>r) return inf*10000;  // attention!
        if(l>=ll && r<=rr) return t[k];
        push_down(k,l,r);
        return min(query(chl,l,mid,ll,rr),query(chr,mid+1,r,ll,rr));
    }
    T query(int ll,int rr) {return query(1,1,n,ll,rr);}
};

还有一种不太一样的线段树叫做权值线段树,是用来维护区间内的数字出现次数的;我们用离散化的思想把出现数据和 1-n 一一映射,接下来的处理和普通线段树就差不多了。




树状数组

这是一种比线段树low一些,不过速度非常快的维护数组前缀和的数据结构。

由于树状结构已经确定,构建的时候可以通过n次更新来完成。lowbit(x) 返回 x 最低的 2 k 2^k 2k,c[i] 维护长度为 lowbit(i) 的 a 数组的前缀和。每次求前缀和就是把每个 1 位对应维护的 c数组中的值求和,而更新则是以当前为起始,不停往后更新,每次更新节点维护的长度乘2。

代码也非常简洁:

// Binary Indexed Tree
template<class T>
struct BIT
{
    T *a,*c;
    int n;
    BIT(int n) {this->n=n; a=new T[n+5](); c=new T[n+5]();}

    int lowbit(int w) {return w&(-w);}
    T sum(int w) {T ret=0; while(w>0) ret+=c[w],w-=lowbit(w); return ret;}
    void update(int w,T x) {a[w]+=x; while(w<=n) c[w]+=x,w+=lowbit(w);}
    T sum(int l,int r) {return sum(r)-sum(l-1);}
};




单调队列

其实有单调栈单调队列,但是其实单调栈就是一种特殊的单调队列,所以可以混为一谈。

单调队列就是维护一个序列,这个序列是单调的,而且只能从队首和队尾进行操作(单调栈就是只能栈顶),往往用于优化某一类问题,这一类问题有很多潜在答案,我们每次把更优的答案放在更前面,并且保证每个值只会出入队列一次,这样就可以在 O(n) 的时间内解决这类问题。

经典的应用是 滑动窗口(sliding window) ,该题的代码如下:

const int maxn=1e6+5;
typedef pair<int,int> P;
P Q[maxn];
int head,tail,n,k,a[maxn];

void solve(int cmp(int,int))
{
    head=tail=0;
    REP(i,1,n)
    {
        if(i<k)
        {
            while(head<tail && cmp(Q[tail-1].first,a[i])) tail--;
            Q[tail++]=P(a[i],i);
        }
        else
        {
            while(head<tail && Q[head].second<=i-k) head++;
            while(head<tail && cmp(Q[tail-1].first,a[i])) tail--;
            Q[tail++]=P(a[i],i);
            printf("%d ",Q[head].first);
        }
    }
    puts("");
}

int cmp1(int x,int y) {return x<=y;}
int cmp2(int x,int y) {return x>=y;}

int main()
{
    //freopen("input.txt","r",stdin);
    scanf("%d%d",&n,&k);
    REP(i,1,n) scanf("%d",&a[i]);

    solve(cmp2); solve(cmp1);

    return 0;
}

单调队列还可以解决很多问题,比如说对于一个序列,可以求出每个数左侧第一个大于(或等于)这个数的位置,比如这题 bad hair day(这题是右侧)。这题代码如下:

const int maxn=8e4+5;
typedef pair<int,int> P;
P Q[maxn];
int head,tail,n,h[maxn],l[maxn];

int main()
{
    //freopen("input.txt","r",stdin);
    n=read();
    REP_(i,n,1) h[i]=read();
    LL ans=0;
    REP(i,1,n)
    {
        while(head<tail && Q[tail-1].first<h[i]) tail--;
        l[i]=head<tail?Q[tail-1].second:0;
        Q[tail++]=P(h[i],i);
    }
    REP(i,1,n) ans+=i-l[i]-1;
    cout<<ans;

    return 0;
}

另外,单调队列还可以用来优化dp。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值