根据前序中序遍历,重建二叉树

题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
解题思路:和我之前一篇博客,根据前序中序遍历确定后序遍历的文章一个思路,都是抓住前序遍历中的根节点位置,递归的把中序遍历中的根 与左右子树拿出来,然后无论是输出后序还是重建树就都可以了

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}//拷贝构造函数
 * };
 */
class Solution {
public:
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) 
    {
            auto inlen = vin.size();
            if(inlen==0)
                return NULL;
            vector<int> left_pre,right_pre,left_in,right_in;

            //创建根节点,根节点肯定是前序遍历的第一个数

            TreeNode* head=new TreeNode(pre[0]);//调用拷贝构造函数

            //找到中序遍历根节点所在位置,存放于变量gen中 
            int gen=0; 
            for(int i=0;i<inlen;i++)
            { 
                if (vin[i]==pre[0])
                {
                    gen=i;
                    break;
                }
            }
            //中序遍历中,gen左边的肯定是左子树,根右边的是右子树
            //前序遍历根 左 右 ,同样,计数左子树的个数,这一部分也是左子树(只不过顺序不同了)
            for(int i=0;i<gen;i++)
            {
                left_vin.push_back(vin[i]);

                left_pre.push_back(pre[i+1]);//前序第一个为根节点 
            } 
            for(int i=gen+1;i<inlen;i++) 
            {
                right_vin.push_back(vin[i]);

                right_pre.push_back(pre[i]);
            }
             //递归地构建左子树,右子树
           head->left=reConstructBinaryTree(left_pre,left_vin);
           head->right=reConstructBinaryTree(right_pre,right_vin);
           return head; 
        }

};

关于new运算符:

  • new创建类对象需要指针接收,
  • 一处初始化,多处使用 new创建类对象使用完需delete销毁
  • new创建对象直接使用堆空间,而局部不用new定义类对象则使用栈空间
  • new对象指针用途广泛,比如作为函数返回值、函数参数等
  • 频繁调用场合并不适合new,就像new申请和释放内存一样
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值