1.什么是AVL树
AVL树是二叉搜索树的优化版,又称平衡二叉搜索树,高度平衡树。
我们都知道当一棵二叉搜索树的结点一直单边插入时,这时候它的查找效率趋近O(n),非常慢。而AVL树的特是:“AVL树中任何结点的两个子树的高度最大差别为1” ,这样就克服了结点单边存储而导致查找效率低下的问题。
如上图,左边是AVL树,右侧为非AVL树,右子树高度减去左子树的高度(简称平衡因子)的绝对值不超过1(-1/0/1),而非AVL树则做不到这一点。每当新插入一个结点后,都要检查是否保持这一原则,如果某结点的高度差绝对值超过了1,那么就要通过旋转来重新恢复AVL树。AVL树当中最需要弄清楚的2个问题,1个就是平衡因子的控制,另一个就是学会AVL的旋转。
2.AVL树节点定义
template<class K>
struct AVLTreeNode
{
K _key;//节点内的值
AVLTreeNode<K>* _left;//左子树节点
AVLTreeNode<K>* _right;//右子树节点
AVLTreeNode<K>* _parent;//双亲节点
int _bf;//平衡因子
AVLTreeNode(const K& key)
:_left(NULL)
, _right(NULL)
, _parent(NULL)
, _key(key)
, _bf(0)
{}
};
平衡树相比于普通二叉搜索树加入了一个平衡因子。
3.AVL树的平衡因子
根据上面的讲解,我们知道平衡因子的值是当前结点右子树的高度减去左子树的高度,所以计算平衡因子前我们还要有一个计算子树高度的函数Height(),函数GetBf()用于计算平衡子。
size_t Height(Node* root)//计算树的高度
{
if (root == nullptr)
{
return 0;
}
size_t leftHeight = Height(root->_left);
size_t rightHeight = Height(root->_right);
return leftHeight > rightHeight ? (leftHeight + 1) : (rightHeight + 1);
}
void GetBf(Node *root)//计算平衡因子
{
if (root == nullptr)
{
return;
}
root->_bf = Height(root->_right) - Height(root->_left);
if (abs(root->_bf) > 1)
{
std::cout << "节点" << root->_key << "的平衡因子有误!" << std::endl;
}
GetBf(root->_left);
GetBf(root->_right);
}
4.AVL树的插入
AVL树的插入也属于AVL树的一个重头戏,因为他糅合了二叉树的插入,AVL树的旋转,平衡因子的修改等多个知识点。下面我们来系统的说一下AVL树的插入。
AVL树的插入分如下几个步骤:
1.像二叉搜索树那样将数据插入到树中。
2.更新父结点的平衡因子,验证插入结点及其父亲结点的平衡因子是否正确,不正确则调用适当的旋转函数。
3.使用“左单旋”,“右单旋”,“左右双旋”,“右左双旋” 4种方式的一种旋转树,并更新平衡因子的值。
4.1将数据插入到树中
//1.判断空树
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
//2.查找位置
Node* cur = _root;
Node * parent = nullptr;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;//节点已经存在
}
}
//3.插入数据
cur = new Node(key);
if (parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
4.2更新父节点平衡因子的值,验证是否正确,不正确则选择适当的旋转方式
//4.验证平衡因子的值
while (parent)
{
if (cur == parent->_left)
{
--(parent->_bf);
}
else
{
++(parent->_bf);
}
if (parent->_bf == 0)//说明之前的平衡因子值为-1或1,此时满足AVL树特性,调整结束
{
break;
}
else if (abs(parent->_bf) == 1)//说明之前的平衡因子值为0,需要向上调整。
{
cur = cur->_parent;
parent = parent->_parent;
}
else if (abs(parent->_bf) == 2)//说明已经不满足AVL树的特性,选择适当旋转方式
{
if ((parent->_bf == -2) && (cur->_bf == -1))//右单旋
{
_RotateR(parent);
}
if ((parent->_bf == 2) && (cur->_bf == 1))//左单旋
{
_RotateL(parent);
}
if ((parent->_bf == -2) && (cur->_bf == 1))//左右双旋
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
_RotateL(parent->_left);
_RotateR(parent);
subLR->_bf = 0;
if (bf == 1)
{
subL->_bf = -1;
parent->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
}
}
if ((parent->_bf == 2) && (cur->_bf == -1))//右左双旋
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
_RotateR(parent->_right);
_RotateL(parent);
subRL->_bf = 0;
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
}
break;//调整之后一定符合AVL树特性,调整结束。
}
else//大于2的情况直接报错
{
assert(false);
}
}
return true;
}
Cur插入后,Parent的平衡因子一定需要调整,在插入之前,Parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1.如果Cur插入Parent的左侧,只需给Parent的平衡因子-1即可
2.如果Cur插入到Parent的右侧,只需给Parent的平衡因子+1即可。此时:Parent的平衡因子可 能有三种情况:0,正负1, 正负2
如果Parent的平衡因子为0,说明插入之前Parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。
如果Parent的平衡因子为正负1,说明插入前Parent的平衡因子一定为0,插入后被更新成正负1,
此时以Parent为根的树的高度增加,需要继续向上更新。
如果Parent的平衡因子为正负2,则Parent的平衡因子违反平衡树的性质,需要对其进行旋转处理。
下面来依次介绍各种旋转方式
4.3选择旋转方式并更新平衡因子的值
AVL树的旋转有4种方式:“左单旋”,“右单旋”,“左右双旋”,“右左双旋”。
4.3.1左单旋
圆圈为核心结点,正方形结点是辅助结点,可有可无。
左单旋的应用场景是:parent结点平衡因子是2,subR平衡因子是1。
当前结构中10代表的parent结点平衡因子是2,subR平衡因子是1,不满足AVL特性,进行如下反转:
先将subRL作为parent的右子树分支,再让parent作为subR的左子树分支。这就完成了左单旋。
旋转过后,我们发现,树的高度降下来了,又满足了AVL树的特性。
void _RotateL(Node* parent)
{
Node *ppnode = parent->_parent;
Node *subR = parent->_right;
Node *subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
if (ppnode == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subR;
}
else
{
ppnode->_right = subR;
}
subR->_parent = ppnode;
}
subR->_bf = parent->_bf = 0;
}
4.3.2右单旋
圆圈为核心结点,正方形结点是辅助结点,可有可无。
右单旋的应用场景为:parent的平衡因子是-2,subL的平衡影子是-1时。
当前parent结点的平衡因子是-2,subL的平衡因子是-1,不满足AVL特性,因此使用右单旋。
将subLR作为parent的左子树分支,再将parent作为subL的右子树分支。即完成右单旋。
void _RotateR(Node* parent)
{
Node* ppnode = parent->_parent;
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
parent->_parent = subL;
if (ppnode == nullptr)
{
subL->_parent = nullptr;
_root = subL;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subL;
}
else
{
ppnode->_right = subL;
}
subL->_parent = ppnode;
}
subL->_bf = parent->_bf = 0;
}
4.3.3左右双旋
圆圈结点是核心结点,正方形结点是辅助结点,可有可无。
左右双旋的应用场景与左右双旋的稍有不同:插入的新结点在较高左子树的右侧
(也就是图1中subR中的位置)。他可以拆解为一次左单旋和右单旋。我们依次来看这个过程:
1.先左单旋(图1 -> 图2):parent为红色结点,subR为黑色结点,以这两个结点为核心进行左单旋:
subRL作为parent的右子树,parent作为subR的左子树,同时subR代替parent成为蓝色结点的左子树。
2.再右单旋:parent为蓝色结点,subL为黑色结点,以这两个结点为核心进行右单旋:subLR作为
parent的左子树,parent作为subL的右子树,同时subL代替parent与其父亲结点相连(parent为根则设置subL的父亲节点为空)
if ((parent->_bf == -2) && (cur->_bf == 1))//左右双旋
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
_RotateL(parent->_left);
_RotateR(parent);
subLR->_bf = 0;
if (bf == 1)
{
subL->_bf = -1;
parent->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
}
}
有人会想,左右双旋不就是一个左单旋加一个右单旋麻,为什么
上述代码中多了一些东西。
其实这是因为插入点的位置不确定,看下图:
上述代码中subRL就是此处的60结点,在旋转前我们先保存60结点的平衡因子,旋转结束后,更新平衡因子前,我们通过60号平衡因子的值来确定是在b处插入还是c出插入,再对应更新30(subL),90(parent)的平衡因子。
4.3.4右左双旋
圆圈结点为核心结点,正方形结点是辅助结点,可有可无。
理解了左右双旋,右左双旋也是一个道理的。他适用于新结点插入位置在较高右子树的左边。
先进行右单旋:蓝色结点为parent,黑色结点为subL。让subLR作为parent的左子树,在让parent作为subL的右子树,subL代替parent与红色结点相连。
再进行右单旋:红色结点为parent,黑色结点为subR。让subRL作为parent的右子树,再让parent作为subR的左子树,如果parent之前还有父亲结点,让subR成为其新的对应分支结点。
if ((parent->_bf == 2) && (cur->_bf == -1))//右左双旋
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
_RotateR(parent->_right);
_RotateL(parent);
subRL->_bf = 0;
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
}
5.AVL树的判定
bool IsBlanceTree()
{
return _IsBlanceTree(_root);
}
bool _IsBlanceTree(Node *root)
{
if (root == nullptr)
{
return true;
}
int leftHeight = Height(root->_left);
int rightHeight = Height(root->_right);
int bf = rightHeight - leftHeight;
if (bf != root->_bf)
{
std::cout << root->_key << "结点平衡因子异常";
}
return abs(rightHeight - leftHeight)< 2 && _IsBlanceTree(root->_left) && _IsBlanceTree(root->_right);
}
6.AVL树的查找
Node* find(const K& key)//查找
{
if (_root == nullptr)
return nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
{
cur = cur->_left;
}
else if (cur->_key < key)
{
cur = cur->_right;
}
else
return cur;
}
return nullptr;
}
7.AVL树的遍历(中序)
void InOrder()
{
_InOrder(_root);
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
std::cout << root->_key << " ";
_InOrder(root->_right);
}