金融风控训练营--Task 02 EDA探索性数据分析 学习笔记


前言

本学习笔记为阿里云天池龙珠计划金融风控训练营的学习内容,学习链接为:
https://tianchi.aliyun.com/specials/activity/promotion/aicampfr


一、学习知识点概要

1.1 探索性数据分析(Exploratory Data Analysis,EDA)的目的

  • 1.EDA价值主要在于熟悉了解整个数据集的基本情况(缺失值,异常值),对数据集进行验证是否可以进行接下来的机器学习或者深度学习建模.

  • 2.了解变量间的相互关系、变量与预测值之间的存在关系。

  • 3.为特征工程做准备
    在这里插入图片描述


二、学习内容

2.1 数据总体了解

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')

2.1.1 读取数据集并了解数据集大小,原始特征维度

data_train = pd.read_csv('./train.csv')
data_test_a = pd.read_csv('./testA.csv')

分块读取文件:

data_train_sample = pd.read_csv("./train.csv",nrows=5)
#设置chunksize参数,来控制每次迭代数据的大小
chunker = pd.read_csv("./train.csv",chunksize=5)
for item in chunker:
    print(type(item))
    #<class 'pandas.core.frame.DataFrame'>
    print(len(item))
    #5

查看数据集的样本个数和原始特征维度

data_test_a.shape
data_train.shape
data_train.columns

注意:是shape,不是shape()

2.1.2 通过info熟悉数据类型

data_train.info()

注意:是info(),info后面有括号

2.1.3 粗略查看数据集中各特征基本统计量

data_train.describe()
data_train.head(3).append(data_train.tail(3))

2.2 缺失值和唯一值:

2.2.1 查看数据缺失值情况

print(f'There are {data_train.isnull().any().sum()} columns in train dataset with missing values.')
There are 22 columns in train dataset with missing values.

上面得到训练集有22列特征有缺失值,进一步查看**缺失特征中缺失率大于50%**的特征

have_null_fea_dict = (data_train.isnull().sum()/len(data_train)).to_dict()
fea_null_moreThanHalf = {}
for key,value in have_null_fea_dict.items():
    if value > 0.5:
        fea_null_moreThanHalf[key] = value
fea_null_moreThanHalf

具体地查看缺失特征及缺失率

# nan可视化
missing = data_train.isnull().sum()/len(data_train)
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()

在这里插入图片描述

  • 纵向了解哪些列存在 “nan”, 并可以把nan的个数打印,主要的目的在于查看某一列nan存在的个数是否真的很大,如果nan存在的过多,说明这一列对label的影响几乎不起作用了,可以考虑删掉。如果缺失值很小一般可以选择填充。
  • 另外可以横向比较,如果在数据集中,某些样本数据的大部分列都是缺失的且样本足够的情况下可以考虑删除。

2.2.2 查看唯一值特征情况

one_value_fea = [col for col in data_train.columns if data_train[col].nunique() <= 1]
one_value_fea_test = [col for col in data_test_a.columns if data_test_a[col].nunique() <= 1]
one_value_fea
['policyCode']
one_value_fea_test
['policyCode']
print(f'There are {len(one_value_fea)} columns in train dataset with one unique value.')
print(f'There are {len(one_value_fea_test)} columns in test dataset with one unique value.')
There are 1 columns in train dataset with one unique value.
There are 1 columns in test dataset with one unique value.

47列数据中有22列都缺少数据,这在现实世界中很正常。‘policyCode’具有一个唯一值(或全部缺失)。有很多连续变量和一些分类变量。

2.3 深入数据-查看数据类型

numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))

2.3.1 类别型数据

category_fea

2.3.2 数值型数据

numerical_fea
data_train.grade
0         E
1         D
2         D
3         A
4         C
         ..
799995    C
799996    A
799997    C
799998    A
799999    B
Name: grade, Length: 800000, dtype: object
  • 连续数值型数据
    划分数值型变量中的连续变量和离散型变量
#过滤数值型类别特征
def get_numerical_serial_fea(data,feas):
    numerical_serial_fea = []
    numerical_noserial_fea = []
    for fea in feas:
        temp = data[fea].nunique()
        if temp <= 10:
            numerical_noserial_fea.append(fea)
            continue
        numerical_serial_fea.append(fea)
    return numerical_serial_fea,numerical_noserial_fea
numerical_serial_fea,numerical_noserial_fea = get_numerical_serial_fea(data_train,numerical_fea)
numerical_serial_fea
  • 离散数值型数据
numerical_noserial_fea
['term',
 'homeOwnership',
 'verificationStatus',
 'isDefault',
 'initialListStatus',
 'applicationType',
 'policyCode',
 'n11',
 'n12']
  • 对9个离散型变量进行分析
data_train['term'].value_counts()#离散型变量
3    606902
5    193098
Name: term, dtype: int64

其余离散型变量同上

  • 对连续型变量进行分析
#每个数字特征得分布可视化
f = pd.melt(data_train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

查看某一个数值型变量的分布,查看变量是否符合正态分布,如果不符合正太分布的变量可以log化后再观察下是否符合正态分布。
如果想统一处理一批数据变标准化 必须把这些之前已经正态化的数据提出
正态化的原因:一些情况下正态非正态可以让模型更快的收敛,一些模型要求数据正态(eg.
GMM、KNN),保证数据不要过偏态即可,过于偏态可能会影响模型预测结果。

#Ploting Transaction Amount Values Distribution
plt.figure(figsize=(16,12))
plt.suptitle('Transaction Values Distribution', fontsize=22)
plt.subplot(221)
sub_plot_1 = sns.distplot(data_train['loanAmnt'])
sub_plot_1.set_title("loanAmnt Distribuition", fontsize=18)
sub_plot_1.set_xlabel("")
sub_plot_1.set_ylabel("Probability", fontsize=15)

plt.subplot(222)
sub_plot_2 = sns.distplot(np.log(data_train['loanAmnt']))
sub_plot_2.set_title("loanAmnt (Log) Distribuition", fontsize=18)
sub_plot_2.set_xlabel("")
sub_plot_2.set_ylabel("Probability", fontsize=15)
Text(0, 0.5, 'Probability')

在这里插入图片描述
非数值类别型变量分析

category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
data_train['grade'].value_counts()
B    233690
C    227118
A    139661
D    119453
E     55661
F     19053
G      5364
Name: grade, dtype: int64

其余变量操作同上

2.4 数据间相关关系

2.4.1 特征和特征之间关系

单一变量分布可视化

plt.figure(figsize=(8, 8))
sns.barplot(data_train["employmentLength"].value_counts(dropna=False)[:20],
            data_train["employmentLength"].value_counts(dropna=False).keys()[:20])
plt.show()

在这里插入图片描述

2.4.2 特征和目标变量之间关系

根据y值不同,可视化x某个特征的分布
首先查看类别型变量在不同y值上的分布

train_loan_fr = data_train.loc[data_train['isDefault'] == 1]
train_loan_nofr = data_train.loc[data_train['isDefault'] == 0]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 8))
train_loan_fr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax1, title='Count of grade fraud')
train_loan_nofr.groupby('grade')['grade'].count().plot(kind='barh', ax=ax2, title='Count of grade non-fraud')
train_loan_fr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax3, title='Count of employmentLength fraud')
train_loan_nofr.groupby('employmentLength')['employmentLength'].count().plot(kind='barh', ax=ax4, title='Count of employmentLength non-fraud')
plt.show()

在这里插入图片描述
其次查看连续型变量在不同y值上的分布

fig, ((ax1, ax2)) = plt.subplots(1, 2, figsize=(15, 6))
data_train.loc[data_train['isDefault'] == 1] \
    ['loanAmnt'].apply(np.log) \
    .plot(kind='hist',
          bins=100,
          title='Log Loan Amt - Fraud',
          color='r',
          xlim=(-3, 10),
         ax= ax1)
data_train.loc[data_train['isDefault'] == 0] \
    ['loanAmnt'].apply(np.log) \
    .plot(kind='hist',
          bins=100,
          title='Log Loan Amt - Not Fraud',
          color='b',
          xlim=(-3, 10),
         ax=ax2)

在这里插入图片描述

total = len(data_train)
total_amt = data_train.groupby(['isDefault'])['loanAmnt'].sum().sum()
plt.figure(figsize=(12,5))
plt.subplot(121)##1代表行,2代表列,所以一共有2个图,1代表此时绘制第一个图。
plot_tr = sns.countplot(x='isDefault',data=data_train)#data_train‘isDefault’这个特征每种类别的数量**
plot_tr.set_title("Fraud Loan Distribution \n 0: good user | 1: bad user", fontsize=14)
plot_tr.set_xlabel("Is fraud by count", fontsize=16)
plot_tr.set_ylabel('Count', fontsize=16)
for p in plot_tr.patches:
    height = p.get_height()
    plot_tr.text(p.get_x()+p.get_width()/2.,
            height + 3,
            '{:1.2f}%'.format(height/total*100),
            ha="center", fontsize=15) 
    
percent_amt = (data_train.groupby(['isDefault'])['loanAmnt'].sum())
percent_amt = percent_amt.reset_index()
plt.subplot(122)
plot_tr_2 = sns.barplot(x='isDefault', y='loanAmnt',  dodge=True, data=percent_amt)
plot_tr_2.set_title("Total Amount in loanAmnt  \n 0: good user | 1: bad user", fontsize=14)
plot_tr_2.set_xlabel("Is fraud by percent", fontsize=16)
plot_tr_2.set_ylabel('Total Loan Amount Scalar', fontsize=16)
for p in plot_tr_2.patches:
    height = p.get_height()
    plot_tr_2.text(p.get_x()+p.get_width()/2.,
            height + 3,
            '{:1.2f}%'.format(height/total_amt * 100),
            ha="center", fontsize=15)     

在这里插入图片描述
时间格式数据处理及查看

#转化成时间格式  issueDateDT特征表示数据日期离数据集中日期最早的日期(2007-06-01)的天数
data_train['issueDate'] = pd.to_datetime(data_train['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
data_train['issueDateDT'] = data_train['issueDate'].apply(lambda x: x-startdate).dt.days
#转化成时间格式
data_test_a['issueDate'] = pd.to_datetime(data_test_a['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
data_test_a['issueDateDT'] = data_test_a['issueDate'].apply(lambda x: x-startdate).dt.days
plt.hist(data_train['issueDateDT'], label='train');
plt.hist(data_test_a['issueDateDT'], label='test');
plt.legend();
plt.title('Distribution of issueDateDT dates');
#train 和 test issueDateDT 日期有重叠 所以使用基于时间的分割进行验证是不明智的

数据透视表

#透视图 索引可以有多个,“columns(列)”是可选的,聚合函数aggfunc最后是被应用到了变量“values”中你所列举的项目上。
pivot = pd.pivot_table(data_train, index=['grade'], columns=['issueDateDT'], values=['loanAmnt'], aggfunc=np.sum)
pivot

2.5 用pandas_profiling生成数据报告

import pandas_profiling

pfr = pandas_profiling.ProfileReport(data_train)
pfr.to_file("./example.html")

三、学习问题与解答

暂无


四、学习思考与总结

继续加油!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值