[题目描述]
二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。
二分法的步骤为:
检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a,b]内的根。
[解题思路]
使用f()来求多项式的值,但是由于多项式的系数需要用户输入,若不定义为全局变量,那么实现该函数时就需要把这些系数作为函数的参数,那么函数的参数就会看起来很多,因此我采用定义一个数组来存放系数,注意是先输入系数a3,最后输入系数a1(不要把顺序弄乱哦~)。
接着就是按照题目描述用代码实现,题目中给定阈值可以设置为1e-6,还有就是不要忘记单根是区间的端点(我就是忘记这里~)。
还有abs()是求整数的绝对值,而我们这道题目是浮点数,可以使用fabs(),注意哦!
[C语言代码实现]
#include <stdio.h>
#include <math.h>
float arr[4] = {
0};
float f(float x){
int i = 0;
float s = 0;
for (i=0; i<4; i++)
s += arr[i] * pow(x, i);
return s;
}
int main(){
int i = 0;
for (i=3; i