这个题开始想写一个关于数列排序。后来看标准库发现vector序列可以直接比较大小。就只需要先把所有答案存起来在sort就行了
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
int w[110];
int isleaf[110];
int s,p;
map<int,vector<int> >tree;
vector<int> v;
vector<vector<int> >ans;
void dfs(int root,int level){
v.push_back(w[root]);
int len=tree[root].size();
if(len==0){
if(level==s){
ans[p]=v;
p++;
}
v.pop_back();
return;
}
for(int i=0;i<len;++i){
int t=tree[root][i];
if(level+w[t]<=s)
dfs(t,level+w[t]);
}
v.pop_back();
}
int main(){
int n,m,a,b,t;
scanf("%d%d%d",&n,&m,&s);
ans.resize(1000);
for(int i=0;i<110;++i) ans[i].resize(110);
for(int i=0;i<n;++i) scanf("%d",&w[i]);
for(int i=0;i<m;++i){
scanf("%d%d",&a,&b);
isleaf[a]=1;
while(b--){
scanf("%d",&t);
tree[a].push_back(t);
}
}
dfs(0,w[0]);
sort(ans.begin(),ans.begin()+p);
for(int i=p-1;i!=-1;--i){
int len=ans[i].size();
printf("%d",ans[i][0]);
for(int j=1;j<len;++j) printf(" %d",ans[i][j]);
printf("\n");
}
return 0;
}
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2