pat-a1053. Path of Equal Weight (30)

这个题开始想写一个关于数列排序。后来看标准库发现vector序列可以直接比较大小。就只需要先把所有答案存起来在sort就行了

#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
int w[110];
int isleaf[110];
int s,p;
map<int,vector<int> >tree;
vector<int> v;
vector<vector<int> >ans;
void dfs(int root,int level){
	v.push_back(w[root]);
	int len=tree[root].size();
	if(len==0){
		if(level==s){
			ans[p]=v;
			p++;
		}
		v.pop_back();
		return;
	}
	for(int i=0;i<len;++i){
		int t=tree[root][i];
		if(level+w[t]<=s)
		 dfs(t,level+w[t]);
	}
	v.pop_back();
}
int main(){
	int n,m,a,b,t;
	scanf("%d%d%d",&n,&m,&s);
	ans.resize(1000);
	for(int i=0;i<110;++i) ans[i].resize(110);
	for(int i=0;i<n;++i) scanf("%d",&w[i]);
	for(int i=0;i<m;++i){
		scanf("%d%d",&a,&b);
		isleaf[a]=1;
		while(b--){
			scanf("%d",&t);
			tree[a].push_back(t);
		}
	}
	dfs(0,w[0]);
	sort(ans.begin(),ans.begin()+p);
	for(int i=p-1;i!=-1;--i){
		int len=ans[i].size();
		printf("%d",ans[i][0]);
		for(int j=1;j<len;++j) printf(" %d",ans[i][j]);
		printf("\n");
	}
	return 0;
} 

Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.


Figure 1

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:

For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.

Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值