咨询
文章平均质量分 59
Json_Nie
刚入职的青椒,实验室主要从事信息安全,计算机视觉,医学图像处理,人体动作识别,目标跟踪,多媒体处理,社交网络研究等方向,有读研的同学可以联系我
展开
-
SHREC 15 Track 3D Object Retrieval with Multimodal Views 比赛结果
两个月的忙碌,目前SHREC的比赛已经结束。贴出来最后的report,给有兴趣的同学参考学习。http://pan.baidu.com/s/1mgIGcFA原创 2015-03-11 09:24:30 · 1448 阅读 · 2 评论 -
距离和相似度度量
原文地址:http://webdataanalysis.net/reference-and-source/distance-and-similarity/在数据分析和数据挖掘的过程中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如K最近邻(KNN)和K均值(K-Means)。当然衡量个体差异的方法有很转载 2013-02-18 21:45:22 · 1081 阅读 · 0 评论 -
永不死机的电脑
电脑死机是世界上最令人抓狂的事情,没有之一。近日,国外一组科学家成功研发了号称一台永远都不会死机的电脑,这台电脑不死机的秘诀在于混乱无序。这就是所谓的乱中有序,无招胜有招吗? 这台电脑名为 systemic,由英国伦敦大学学院的科学家们设计和建造,和现在我们使用的电脑完全不同。我们现在使用的电脑循序执行任务,一次执行一个指令,过程繁重,在进行下一步之前还需要将结果存回存储器中。转载 2013-02-16 16:00:18 · 916 阅读 · 0 评论 -
Columbia374 使用
Columbia374 是一个图片内容的检测(image concept detection)但是download中作者仅仅给了image的特征,模型,标记等。这里主要介绍下怎么使用这个模型去检测我们自己的图片。首先模型使用的是libsvm产生的model,图片的特征作者没有给代码但是paper里面有介绍但是我不敢保证自己的code是不是跟作者完全一样。所以搜索后发现了Colu原创 2013-02-02 10:01:49 · 814 阅读 · 0 评论 -
WordNet介绍和使用
Wordnet是一个词典。每个词语(word)可能有多个不同的语义,对应不同的sense。而每个不同的语义(sense)又可能对应多个词,如topic和subject在某些情况下是同义的,一个sense中的多个消除了多义性的词语叫做lemma。例如,“publish”是一个word,它可能有多个sense:1. (39) print, publish -- (put into print; "转载 2013-01-29 09:38:36 · 1091 阅读 · 0 评论 -
10个出色的NoSQL数据库
虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。1. Casssandra转载 2012-12-07 09:47:45 · 1148 阅读 · 0 评论 -
Obama VS Romney on Twitter
今天想总结下前段时间学习的java语言和抓包的一些技巧。于是我编写了一个抓包工具抓取了Obama和Romney十月一号到11月29号发的所有微博。主要是想通过信息的总结,看看能看出什么表面上看不到的东西我主要分析了以下几点:1 Obama和Romney每天都是什么时间发twitter2 从两个人的tweets看看两人常说的单词有哪些3 观察下在两个月中,两个人那几天twee原创 2012-11-30 21:49:13 · 842 阅读 · 2 评论 -
Online learning of robust object detectors during unstable tracking
文章主要介绍了一下TMD-tracing model detection的跟踪系统。其中主要介绍的应该是Online learning的算法,或者是系统。个人感觉这个是Zdenek PN-learning算法的雏形。这个online learning算法主要由两个部分组成。1 Growing events 挑选正样本添加到训练集中。2 Pruning events 修剪负样本,让模原创 2012-11-27 10:13:28 · 1105 阅读 · 0 评论 -
Particle Filter简要介绍(Latex)
最近推导了一遍Particle Filter的原理有了更详细的理解,写了一个小总结。主要是关于自己的理解。因为是用Latex写的,所以没办法黏贴过来了,所以就把Latex的代码黏贴在了下面。希望对同样学习中的同学有所帮助。\documentclass[paper=a4, fontsize=11pt]{scrartcl} % A4 paper and 11pt font size原创 2012-10-31 19:50:27 · 2324 阅读 · 1 评论 -
Web系统开发学习
实验室很多东西都是web端的工作,需要学习下,所以: 首先:搭建环境:比如apache, tomcat, mysqle等等这些东西的配置很麻烦,但如果会配置,应该会对各个模块间的工作更熟悉吧这里我推荐xampp这个如软件它可以把所有的东西都配置好了方便我们开发 再次:看看搭建需要学什么东西,也就是语言了:javescript, php, pythen, ph原创 2012-10-19 11:52:46 · 879 阅读 · 0 评论 -
国际会议oral经验浅谈
第一次参加国际会议并做oral。挺紧张,因为毕竟不是用母语进行。在小木虫上看了很多东西(大家可以借鉴下)但我想告诉大家的是不管你ppt做的多么炫,多么多最最重要的是你需要把你的算法和你的创新点讲清楚。哪怕是你的算法或者formulation多么的简单,但一定要讲清楚小木虫上说不要按照paper的顺序来讲,但我认为还是应该按照这个顺利来说,只是不要用很多的forml原创 2012-09-22 09:43:20 · 10355 阅读 · 0 评论 -
阶段总结
忙了快两个月,在国外的第一批paper终于完成了收货还是很多的,这里简单总结下paper撰写的一些小经验吧不过我是做计算机视觉和多媒体的,如果方向不一样,可能不会有什么用处吧比较基础,大牛可以绕道写作工具:Latex这个现在大家都在用了吧,不用担心排版的问题,只需要有期刊或杂志的模板文件就可以了,编译后生成pdf文件格式paper中的图尽量用矢量图,也就是eps格式原创 2013-03-09 20:04:35 · 856 阅读 · 0 评论 -
Multiple Objects Tracking
Here, I just want to say some ideas about this research point. In my opinion, what is tracking? just want to find some one and to tracking him and to find what he do or where he go.This video ofte原创 2013-03-11 14:12:47 · 1911 阅读 · 0 评论 -
相似度计算常用方法
引言 相似度计算用于衡量对象之间的相似程度,在数据挖掘、自然语言处理中是一个基础性计算。其中的关键技术主要是两个部分,对象的特征表示,特征集合之间的相似关系。在信息检索、网页判重、推荐系统等,都涉及到对象之间或者对象和对象集合的相似性的计算。而针对不同的应用场景,受限于数据规模、时空开销等的限制,相似度计算方法的选择又会有所区别和不同。下面章节会针对不同特点的应用,进行一些常用的相转载 2013-03-22 12:11:03 · 2617 阅读 · 0 评论 -
十个热门开源深度学习框架
DeepMind宣布采用谷歌开源的深度学习框架TensorFlow,不再采用Torch框架。Torch 诞生时间较久,直到去年Facebook 开源了大量Torch的深度学习模块才开始流行起来。DeepMind是谷歌并购的一家AI公司,今年因AlphaGo以4:1的成绩战胜了韩国围棋大师李世石而名声大噪。除此以外,谷歌还有规模更大的Google Brain团队。对于希望在应用中整合深度学习功能的开发转载 2016-07-20 20:02:31 · 834 阅读 · 0 评论 -
IEEE PDF eXpress 通过方法
IEEE PDF eXpress这个东西比较烦人文章是用latex写的,生成pdf后始终是不能通过原因是有些文字无法嵌入到pdf中的,本人之前的解决方法是把所有文件打包生成zip后上传,让ieee来生成pdf但这次一直不行,不过最后找到了一个非常简单的方法安装PDFCreater,之后打印生成的pdf文件,使用PDFCreater重新生成一个pdf文件在把这个pdf文件原创 2015-04-08 23:51:34 · 11173 阅读 · 6 评论 -
SHREC 15 Track 3D Object Retrieval with Multimodal Views
我们实验室组着了一次3D模型的检索比赛,这也是我们实验室搞了一年多的一共数据库,使用了微软kinect录制。模型是我们日常生活中常见的一些物体,录入书本,洗发液,飞机模型等等。实验采用了3个kinect,和一共可以宣战的平台。如下图:每个角度录制360张图片,垂直方向只录制一张图片。每张图片都提供了深度图片和物体的mask。数据库具体的网址如下:点击打开链接。这个比原创 2015-01-04 11:42:23 · 2399 阅读 · 7 评论 -
过拟合和欠拟合理解
这个概念纠结了一天多,之前也看过,但是感觉还是没有理解本质。今天又重新看了下斯坦福的视频,写点自己的理解:机器学习中我们一般都是样本x和标签y,目的是学出一个函数y=f(x)。这个f(x)是关键,斯坦福的课程里面是这么说,如果训练样本少了,导致f(x)过于简单,叫欠拟合如果训练样本太多,导致f(x)过于复杂,这样叫做过拟合。其实这个概念我个人感觉是相对的,过拟合是说f(x)在训原创 2014-03-16 20:11:01 · 3641 阅读 · 1 评论 -
TF-IDF 余弦相似度
转载地址:1 http://www.ruanyifeng.com/blog/2013/03/tf-idf.html2 http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html转载 2013-07-24 10:16:53 · 1991 阅读 · 0 评论 -
LDA 理解及分析
首先给出一些参考网址:http://www.52nlp.cn/lda-math-lda-%E6%96%87%E6%9C%AC%E5%BB%BA%E6%A8%A1http://www.xperseverance.net/blogs/tag/gibbs-sampling/第一个讲的很仔细了这里我主要是对自己理解的一个总结:LDA是什么,其实就是一个简单的model。他能原创 2013-07-29 19:43:29 · 1413 阅读 · 0 评论 -
Dirichlet 理解
一直在用LDA,但是一直不太理解其中Dirichlet抽样是个什么样的东西,于是画了一些时间好好好看了看关于dirichlet的理解。感觉还挺有收货,这里先总结一些资料的出处,希望对大家有帮助:http://cos.name/2013/01/lda-math-gamma-function/这个讲解讲的比较详细,从最基础的gamma函数开始,然后从Beta分布扩展到了Dirichlet的分布原创 2013-06-25 21:05:42 · 1557 阅读 · 0 评论 -
AP聚类算法
AP聚类算法是之前科学杂志上的一个paper之前都没有用过,今天研究了下,感觉这个东西很不错,可以用到很多地方。http://wenku.baidu.com/view/705cd8dcd15abe23482f4de5.html这个是网上最多的一个说明文档,说的很详细,大家可以看看这里我就像说说自己的理解:AP算法主要是两个东西比较重要:Responsibility:原创 2013-05-13 23:07:11 · 8643 阅读 · 6 评论 -
SVD在推荐系统中的应用
%svd chengxu A = [5 5 0 5;5 0 3 4; 3 4 0 3; 0 0 5 3; 5 4 4 5; 5 4 5 5];A = A';[U S V] = svd(A);U = U(:,1:4);S = S(1:4,1:4);V = V(:,1:4);reA = U*S*V';%give one new userbob = [5 5 0 0 0 5原创 2013-05-22 13:12:46 · 1432 阅读 · 1 评论 -
协同滤波推荐系统
最近在看推荐系统实践这本书整体来看,书比较偏向与工程吧但是我发现了代码有很多错误。这里提供给大家一个可以运行的python语言。UserCF程序中user相似度计算程序:def usersimilarity(train): #build inverse table for item_users item_users = dict() for u, ite原创 2013-05-20 22:15:16 · 4270 阅读 · 0 评论 -
Pets 2012 总结
今天会议结束了,开会的人不多,不过都是内部人吧主席讲了:dataset and challenge主要讲了pets 这个数据集的组成,每个视频序列的内容还有每个视频需要达到的目的其中track数据s2 中,本来以为只有level1中需要跟踪所有的人,原来L2和L3跟踪所有个人同样是最终的目标以前以为只需要跟踪几个人,原来自己理解错了。接下来Recovering People原创 2012-09-19 00:46:25 · 2000 阅读 · 4 评论 -
Tracking Object Review
Introduction:There are three key steps in video analysis: detection of interesting moving objects, tracking of such this object from frame to frame, and analysis of object tracks to recognize their原创 2012-10-05 21:50:52 · 2111 阅读 · 0 评论 -
xAd:南京大学大二学生开发的视频内广告动态植入技术
这个不就是水印吗?(好像)电视广告几乎从电视诞生的那天就存在了,我们对此并不陌生,在线视频网站如优酷、土豆等也采用了片头广告的办法——我们在这些网站上面频繁看到的15秒/30秒广告就是它们获得营收的重要手段。视频广告的实现自然不只有片头广告这种“硬”办法,更软的一种办法就是厂商与视频作者合作,以“产品植入”的形式进行广告宣传,只要处理得当,相较片头广告,产品植入的做法更易让观众转载 2012-05-28 08:31:51 · 5713 阅读 · 0 评论 -
极大似然估计的朴素理解
最大似然法,英文名称是Maximum Likelihood Method,在统计中应用很广。这个方法的思想最早由高斯提出来,后来由菲舍加以推广并命名。最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最 大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜转载 2012-05-27 16:15:36 · 1382 阅读 · 0 评论 -
销售员和程序员
原文链接:http://www.aqee.net/the-salesman-and-the-developer/一个销售和一个程序员一起去猎捕狗熊。他们来到森林边的小屋,从车上开始卸东西,搬进小屋,准备接下来这一周在这野外捕熊需要的物品。销售很快就厌烦了这些工作,说:“咱们这么着,你继续卸物品,一切收拾妥当,我去找一只熊来。”程序员一边叹气一边点头(他习惯了销售转载 2012-05-28 08:19:38 · 953 阅读 · 0 评论 -
performace evoluation in tracking object in the video sequence
1 select test caseAs a result, an algorithm is likely to perform similarly in many testcases and such a behavior makes comparable studies unreliable. Additionally, ifwe employ test cases where all t原创 2012-05-09 10:07:17 · 1020 阅读 · 0 评论 -
Precision/Recall和ROC曲线原理以及Matlab源码
查准率和查全率是信息检索效率评价的两个定量指标,不仅可以用来评价每次检索的准确性和全面性,也是在信息检索系统评价中衡量系统检索性能的重要方面。查准率(Precision ratio,简称为P),是指检出的相关文献数占检出文献总数的百分比。查准率反映检索准确性,其补数就是误检率。查全率(Recall ratio,简称为R),是指检出的相关文献数占系统中相关文献总数的百分比。查全率反映转载 2012-05-09 11:08:47 · 4005 阅读 · 0 评论 -
ICPR 2012 Contest (objdect tracking)
一个竞赛关于people tracking in wide baselines camera networks具体的网址在:http://www.wide-baseline-camera-network-contest.org/?page_id=171整个测试环境为4个摄像头。没有重叠需要跟踪出人的运动路径和准确定位,如图:竞赛提到了需要解决的问题:1 判断摄像原创 2012-02-22 09:21:26 · 1334 阅读 · 0 评论 -
代码分析方法
一 收集信息包括:用户文档,设计文档,FAQ,SDK,测试源代码 (网站上能收集到的有用信息)这些信息可以从项目的主页、Wiki、Google、邮件列表、论坛,以及相关的论文和书籍中获得,并且将收集的相关信息统一管理起来。二 制定分析策略由于开源软件的代码量往往是惊人的,很多时候又缺少相关的设计文档和资料,并且对于个人来说精力也是有限的。因此,在代码分析之前制定一套分析策略是比较重要的原创 2012-01-12 14:14:01 · 1166 阅读 · 0 评论 -
Human Action Recognition/Tracking
Human action recognition is the process of detecting human action in the video and labeling it in the image sequences(a video is an image sequence). Some solutions to this problem have applications in原创 2011-12-28 08:37:24 · 1649 阅读 · 0 评论 -
如何才能进入Google工作
Google 目前被公认为是全球规模最大的搜索引擎,它提供了简单易用的免费服务。进入Google工作可能是许多学习计算机的IT人士的梦想,因为谷歌公司不仅有非常好的工资待遇,而且无与伦比的工作环境,更重要的是:在那里我们能够实实在在学习到很多的东西。。。要想去 Google 工作, 可不是一件容易的事情. Google 的目标是招揽世界上最优秀的软件工程师.首先想想转载 2011-12-13 08:54:31 · 6449 阅读 · 1 评论 -
第九届中国机器学习及其应用研讨会
昨天去参加了第九届中国机器学习及其应用研讨会收获颇多本人也说刚刚接触人工智能和机器学习大会上的大牛讲了讲当前领域的发展状况和面临的挑战王珏老师总括了发展史对我帮助比较大大会重点似乎放在了“图模型”上,由于没有看过相关文献听得迷迷糊糊,似乎一直在用概率推来推去只是让我觉得自己的数学实在是太差了!大会的网址:http://bigeye.au.tsin原创 2011-11-07 08:26:43 · 1647 阅读 · 8 评论 -
Ubuntu对比Windows7
当今的社会,科技日新月异。这既带动了电脑价格的下调,也推动了电脑进入寻常百姓家。随着电脑用户的不断增加,不同的电脑操作电脑系统研发者也加大了研发的力度,不断推出适合不同的使用者的操作系统。例如,在2009年的10月份,世界公认的电脑系统巨头微软公司就发布了新一代的操作系统——Windows 7,简称Win 7。Windows7系统在2010年4月29日,Canonical公转载 2012-05-29 22:33:58 · 1518 阅读 · 0 评论 -
图形化编程语言:Blockly
Blockly一种在网页上运行的图形化编程语言。使用者以拖拽拼图的方式开发出应用程序。不需要任何的代码编写。效果演示:走迷宫 – 使用Blockly语言破解迷宫路径。代码转换 – 把Blockly代码转换成JavaScript, Dart, Python 或 XML 代码。RTL – Blockly语言中right-to-left模式中的效果(阿拉伯转载 2012-06-13 09:32:08 · 2728 阅读 · 0 评论 -
研究:Twitter情感趋势反映Facebook IPO走势
股价的走势历来都让人琢磨不透。但是Facebook IPO当天,Twitter却神奇般的预测到了其股价变动的每一个趋势。社交媒体监测平台DataSift监测了Facebook IPO当天Twitter上的情感倾向。即人们在Twitter上发布的大量谈论facebook IPO的Tweet中会包含一些情感倾向,比如正面的或者负面的。结论显示,Twitter上每一次情感倾向的转向都会影响F转载 2012-05-24 08:07:06 · 1147 阅读 · 0 评论 -
Mongodb 一些概念
MongoDB是一种可扩展的高性能的开源的面向文档(document-oriented )的数据库,采用C++开发。注意mongo不是mango(芒果),这个词是从humongous中截取出来的,其野心不言而明,直指海量数据存储。和其他很多NoSQL不太一样,MongoDB背后有一个专门的商业公司在提供支持和推广,有点类似MySQL AB的模式。这一系列文章,是为入门者写的,已经对NoSQL和Mo转载 2012-09-28 14:51:09 · 1157 阅读 · 0 评论